
Twenty (Simple) Questions
Yuval Dagan, Yuval Filmus, Ariel Gabizon, Shay Moran

20 Questions

Twenty Questions Game

Thinks of an object

Finds object using 
Yes/No questions

Animate?

Human?

Yes

Yes

No

No

Alice Cat

Mat

according to known 
distribution µ

Attempts to minimize 
expected # of questions

Alice

Bob

Twenty Questions Game
Thinks of an object

Finds object using 
Yes/No questions

Animate?

Human?

Yes

Yes

No

No

Alice Cat

Mat

according to known 
distribution µ

Attempts to minimize 
expected # of questions

Optimal algorithm: Huffman coding (1952)

While more than one object remains:

 Repeatedly merge two least probable objects

Cost: between H(µ) and H(µ)+1

Issue: Huffman’s algorithm can ask arbitrary questions

Challenge: Same performance using fewer questions

Alice

Bob

Results at a glance
Algorithm Questions PerformanceNumber

Huffman ‘52 Arbitrary 2n entropy + 1

this paper non-constructive Huffman1.25n

this paper ⊆[n/2], ⊇[n/2] Huffman1.41n

Gilbert–Moore ‘59 < entropy + 2n

Rissanen ‘73 < entropy + 2n

this paper <,= entropy + 12n

this paper base n1/r <,= entropy + rrn1/r

this paper intervals with holes Huffman+εnO(1/ε)

Optimal!

Optimal!

Optimal!

Optimal!

Most of our results – optimal with respect to number of questions!

Gilbert–Moore vs Rissanen
P(x1) = 1/5, P(x2) = 1/5, P(x3) = 1/4, P(x4) = 3/20, P(x5) = 1/5

1/5 1/5 1/4 3/20 1/5

x1 x2 x3 x4 x5

Gilbert–Moore Rissanen
x1 x2 x3 x4 x5 x < x3 ?

1/2 1/2

x2 x3 x4 x5x1 x < x5 ?

1/4 1/4

x1 x2 x3 x4 x5 x < x3 ?

2/5 3/5

x3 x4 x5

5/12 7/12

x < x4 ?

x4 x5

3/7 4/7

x < x5 ?Binary search on [0,1]
Equivalent to arithmetic coding

Obtaining redundancy 1

Rissanen
While there is more than one live element:

 Ask the most balanced “<” question

Our algorithm
While there is more than one live element:

 Let xmax be most probable live element

 If P(xmax) ≥ 0.3: Ask “x = xmax ?”

 Otherwise: Ask most balanced “<” question

Problem: x1 x2 x3

Requires two “<” questions to isolate!

Solution: also allow “=” queries!

Outline of analysis
• Let R(µ) = Alg(µ) – H(µ) – 1. 

Our goal: show that R(µ) ≤ 0 for all µ.

• Write a recurrence relation for R(µ) in terms of µ|Yes and µ|No. 

Use R(µ|Yes), R(µ|No) ≤ 0 to obtain an upper bound on R(µ).

• Let r(p) = max of R(µ) in terms of prob of most likely element. 

Our goal: show that r(p) ≤ 0 for all p.

• Write a recurrence relation upper-bounding r(p).

• Solve the recurrence relation to finish the proof.

Questions – redundancy tradeoff
Our algorithm uses 2n potential question to guarantee redundancy 1.

How many questions are needed to guarantee redundancy r?

Idea: Write index i of unknown element in base n1/r: i = ir–1 … i0.

Use redundancy 1 algorithm to determine ir–1, …, i0 one by one.

The algorithm uses 2rn1/r potential questions to guarantee redundancy r.

Matching lower bound Ω(rn1/r):

Consider distributions concentrated on single element (entropy≈0).

Must be able to isolate each element using r questions.

Some open questions
• How fast can we find optimal search tree using “<” and “=”?  

The best search tree using “<” (i.e., BST) can be found in O(n log n). 

In contrast, the best known algorithm when allowing both “<” and “=” takes O(n4).

• How many questions are needed to guarantee redundancy 1?  

Our results: between n and 2n.

• What happens if answerer can lie k times? 

Work in progress: can achieve redundancy k ∑ µi log log (1/µi) + Õ(k2).

• What if we assume that all probabilities are small?  

Classical result of Gallager: can’t go below 0.086 in worst case even for Huffman code. 

Preliminary results: answer for “<” and “=” queries is between 0.501 and 0.586.

• Generalize the theory to d-way queries. 

