20 Questions

Twenty (Simple) Questions Yuval Dagan, <u>Yuval Filmus</u>, Ariel Gabizon, Shay Moran

Twenty Questions Game

Alice

Finds object using Yes/No questions

Thinks of an object

according to known

distribution μ

Attempts to minimize expected # of questions

Twenty Questions Game

Optimal algorithm: Huffman coding (1952)

While more than one object remains: Repeatedly merge two least probable objects

Cost: between H(μ) and H(μ)+1

Issue: Huffman's algorithm can ask arbitrary questions

Challenge: Same performance using fewer questions

Results at a glance

	Algorithm	Questions	Number	Performance	
	Huffman '52	Arbitrary	2 ⁿ	entropy + 1	
Gi	Ibert–Moore '59	<	n	entropy + 2	
	Rissanen '73	<	n	entropy + 2	
	this paper	<,=	2n	entropy + 1	Optimal!
	this paper	base <i>n</i> ^{1/r} <,=	rn ^{1/r}	entropy + r	Optimal!
	this paper	non-constructive	1.25 ⁿ	Huffman	Optimal!
	this paper	⊆[<i>n</i> /2], ⊇[<i>n</i> /2]	1.41 ⁿ	Huffman	
	this paper	intervals with holes	n ^{O(1/ε)}	Huffman+ ε	Optimal!

Most of our results – optimal with respect to number of questions!

Gilbert-Moore vs Rissanen

 $P(x_1) = 1/5$, $P(x_2) = 1/5$, $P(x_3) = 1/4$, $P(x_4) = 3/20$, $P(x_5) = 1/5$

3/7

4/7

Obtaining redundancy 1

 $\begin{array}{c} \text{Problem:} \quad X_1 \\ X_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} X_2 \\ X_3 \\ \end{array} \\ \end{array}$

Requires two "<" questions to isolate!

Solution: also allow "=" queries!

Rissanen

While there is more than one live element: Ask the most balanced "<" question

Our algorithm

While there is more than one live element: Let x_{max} be most probable live element If $P(x_{max}) \ge 0.3$: Ask " $x = x_{max}$?" Otherwise: Ask most balanced "<" question

Outline of analysis

• Let $R(\mu) = Alg(\mu) - H(\mu) - 1$.

Our goal: show that $R(\mu) \leq 0$ for all μ .

- Write a recurrence relation for $R(\mu)$ in terms of $\mu|_{\text{Yes}}$ and $\mu|_{\text{No}}$. Use $R(\mu|_{\text{Yes}})$, $R(\mu|_{\text{No}}) \le 0$ to obtain an upper bound on $R(\mu)$.
- Let $r(p) = \max \text{ of } R(\mu)$ in terms of prob of most likely element. Our goal: show that $r(p) \le 0$ for all p.
- Write a recurrence relation upper-bounding *r*(*p*).
- Solve the recurrence relation to finish the proof.

Questions – redundancy tradeoff

- Our algorithm uses 2n potential question to guarantee redundancy 1. How many questions are needed to guarantee redundancy r? Idea: Write index i of unknown element in base $n^{1/r}$: $i = i_{r-1} \dots i_0$. Use redundancy 1 algorithm to determine i_{r-1}, \dots, i_0 one by one. The algorithm uses $2rn^{1/r}$ potential questions to guarantee redundancy r. Matching lower bound $\Omega(rn^{1/r})$: Consider distributions concentrated on single element (entropy \approx 0).
- Must be able to isolate each element using *r* questions.

Some open questions

How fast can we find optimal search tree using "<" and "="?

The best search tree using "<" (i.e., BST) can be found in $O(n \log n)$. In contrast, the best known algorithm when allowing both "<" and "=" takes $O(n^4)$.

- How many questions are needed to guarantee redundancy 1? Our results: between *n* and 2*n*.
- What happens if answerer can lie *k* times?

Work in progress: can achieve redundancy $k \sum \mu_i \log \log (1/\mu_i) + \tilde{O}(k^2)$.

• What if we assume that all probabilities are small?

Classical result of Gallager: can't go below 0.086 in worst case *even for Huffman code*. Preliminary results: answer for "<" and "=" queries is between 0.501 and 0.586.

• Generalize the theory to *d*-way queries.