Geometric Problems in Moderate Dimensions

> Timothy Chan UIUC

- Orthogonal range search
  - preprocess n points in  $\mathbb{R}^d$  s.t. we can detect, or count, or report points inside a query axis-aligned box



- Orthogonal range search
- Dominance range search
  - preprocess *n* points in  $\mathbb{R}^d$  s.t. we can detect, or count, or report points dominated by *q*, i.e., inside  $(-\infty, q_1] \times \cdots \times (-\infty, q_d]$

(many geom. appl'ns: computing skylines, ...)

(orthogonal range search in  $\mathbb{R}^d$  reduces to dominance in  $\mathbb{R}^{2d}$ )



- Orthogonal range search
- Dominance range search
- $\ell_{\infty}$  nearest neighbor search
  - preprocess n points in  $\mathbb{R}^d$  s.t. we can find  $\ell_\infty\text{-closest}$  point to a query point



- Orthogonal range search
- Dominance range search
- $\ell_{\infty}$  nearest neighbor search
- $\ell_1$  nearest neighbor search

- Non-orthogonal range search
- Halfspace range search



- Non-orthogonal range search
- Halfspace range search
- Ball range search



- Non-orthogonal range search
- Halfspace range search
- Ball range search
- $\ell_2$  nearest neighbor search

(many geom. appl'ns: bichromatic closest/farthest pair, min spanning tree, convex hull, ...)

# Setting

- focus on orthogonal problems
- focus on exact, not approximate
- focus on upper bounds
- n online vs. offline queries

## Low Dimensions: Classical Results from Comp. Geometry

• Orthogonal range search:

$$d^{O(d)} \cdot n \log^{O(d)} n$$
 time

(but meaningful only when  $d \leq \delta_0 \log n \dots$ )

• Non-orthogonal range search:

$$d^{O(d)} \cdot n^{2-1/O(d)}$$
 time

- Boolean orthogonal vector problem (OV)
  - given sets A, B of n vectors in  $\{0, 1\}^d$ , decide  $\exists a \in A, b \in B$ s.t.  $a \cdot b = 0$

(appl'ns: subset queries, partial match queries for strings, ...) (equiv. to Boolean version of offline dominance) (OV Conjecture: no  $O(n^{2-\delta})$  alg'm for  $d = \omega(\log n)$ )

- Boolean matrix multiplication
  - given matrices  $A \in \{0, 1\}^{n \times n}$ ,  $B \in \{0, 1\}^{n \times n}$ , compute  $c_{ij} = \bigvee_k (a_{ik} \wedge b_{kj})$  for each i, j

- Boolean orthogonal vector problem (OV)
  - given sets A, B of n vectors in  $\{0, 1\}^d$ , decide  $\exists a \in A, b \in B$ s.t.  $a \cdot b = 0$

(appl'ns: subset queries, partial match queries for strings, ...) (equiv. to Boolean version of offline dominance) (OV Conjecture: no  $O(n^{2-\delta})$  alg'm for  $d = \omega(\log n)$ )

- Boolean matrix multiplication
  - given matrices  $A \in \{0, 1\}^{n \times d}$ ,  $B \in \{0, 1\}^{d \times n}$ , compute  $c_{ij} = \bigvee_k (a_{ik} \wedge b_{kj})$  for each i, j

- Boolean orthogonal vector problem (OV)
  - given sets A, B of n vectors in  $\{0, 1\}^d$ , decide  $\exists a \in A, b \in B$ s.t.  $a \cdot b = 0$

(appl'ns: subset queries, partial match queries for strings, ...) (equiv. to Boolean version of offline dominance) (OV Conjecture: no  $O(n^{2-\delta})$  alg'm for  $d = \omega(\log n)$ )

- Boolean matrix multiplication
  - i.e., given sets A, B of n vectors in  $\{0, 1\}^d$ , decide whether  $a \cdot b = 0$  for each  $a \in A, b \in B$

• All-pairs shortest paths (APSP)



- All-pairs shortest paths (APSP) or (min,+)-matrix multiplication
  - given matrices  $A \in \mathbb{R}^{n \times n}$ ,  $B \in \mathbb{R}^{n \times n}$ , compute  $c_{ij} = \min_k (a_{ik} + b_{kj})$  for each i, j

(appl'ns: graph diameter/radius/etc., max 2D subarray, language edit distance, min-weight triangulation of polygons, ....)

- All-pairs shortest paths (APSP) or (min,+)-matrix multiplication
  - given matrices  $A \in \mathbb{R}^{n \times d}$ ,  $B \in \mathbb{R}^{d \times n}$ , compute  $c_{ij} = \min_k (a_{ik} + b_{kj})$  for each i, j

- All-pairs shortest paths (APSP) or (min,+)-matrix multiplication
  - i.e., given sets A, B of n vectors in  $\mathbb{R}^d$ , compute  $\min_k(a_k + b_k)$  for each  $a \in A, b \in B$

(reduces to *d* instances of offline dominance by "Fredman's trick":

$$a_{k_0} + b_{k_0} \le a_k + b_k \iff a_{k_0} - a_k \le b_k - b_{k_0}$$
)

#### • (min,+)-convolution

- given vectors  $a, b \in \mathbb{R}^n$ , compute  $c_i = \min_k (a_k + b_{i-k})$  for each i

(appl'ns: jumbled string matching, knapsack, min k-enclosing rectangles, ...)

(reduces to  $O(\sqrt{n})$  (min,+)-matrix multiplication of  $\sqrt{n} \times \sqrt{n}$  matrices)

#### • 3SUM

- given vectors  $a, b, c \in \mathbb{R}^n$ , decide  $\exists i, j, k$  s.t.  $a_i + b_j = c_k$ 

#### SAT for sparse instances

– given CNF formula in n Boolean vars & cn clauses, decide  $\exists$  satisfying assignment

(reduces to OV with  $2^{n/2}$  Boolean vectors in cn dimensions)

- for each partial assignment of first n/2 vars, define vector a with  $a_i = 0$  iff *i*-th clause is already satisfied;
- for each partial assignment of last n/2 vars, define vector b with  $b_i = 0$  iff *i*-th clause is already satisfied)

- SAT for sparse instances
  - given CNF formula in n Boolean vars & cn clauses, decide  $\exists$  satisfying assignment

(reduces to OV with  $2^{n/2}$  Boolean vectors in cn dimensions)

#### • kSAT

(reduces to sparse case)

(SETH Conjecture: no  $(2 - \delta)^n$  alg'm for  $k = \omega(1)$ )

- MAX-SAT for sparse instances
- MAX-kSAT

- Integer 0-1 linear programming for sparse instances
  - given cn linear inequalities with real coeffs. over n 0-1 vars, decide  $\exists$  satisfying assignment

(reduces to dominance with  $2^{n/2}$  real vectors in cn dimensions)

## High Dimensions: By Fast Matrix Multiplication

 offline dominance in Boolean case (i.e., OV) can be trivially solved by Boolean rect. matrix multiplication in M(n, d, n) time

$$-M(n, n, n) = O(n^{2.373})$$

- 
$$M(n, d, n) = \widetilde{O}(n^2)$$
 for  $d \approx n^{0.1}$ 

- offline dominance for real case can be reduced to Boolean case, in  $O(\min_s(M(n, ds, n) + dn^2/s))$ time [Matoušek'91]
  - by dividing into s buckets of size n/s

(but not clear how to beat  $n^2$  time...)

# Moderate Dimensions: This Talk

- subquadratic time for *d* beyond logarithmic?
- let  $d = c \log n$  (c not necessarily constant)

## **Two Approaches**

# Part I. Comp. Geometry Techniques (k-d trees, range trees)

### Part II. Polynomial Method

# k-d Trees ['75]

- 1. pick next axis  $i \in \{1, \ldots, d\}$
- 2. divide by median *i*-th coord.
- 3. recurse on both sides



preproc. time  $O(dn \log n)$ dominance query time  $O(n^{1-1/d})$ 

## Range Trees ['79]

- 0. recurse on projection along 1st coord.
- 1. divide by median 1st coord.
- 2. recurse on both sides



 $P_d(n) \le 2P_d(n/2) + P_{d-1}(n/2) \Rightarrow O(n \log^d n)$  $Q_d(n) \le Q_d(n/2) + Q_{d-1}(n/2) \Rightarrow O(\log^d n)$ 

#### "Lopsided" Range Tree for Offline Dominance [Impagliazzo-Lovett-Paturi-Schneider'14]

- 0. recurse on projection along 1st coord.
- 1. divide by median 1st coord.
- 2. recurse on both sides



#### "Lopsided" Range Tree for Offline Dominance [Impagliazzo-Lovett-Paturi-Schneider'14]

0. recurse on projection along 1st coord.

1. divide by  $(\alpha n)$ -th largest 1st coord. for some  $\alpha$ 

2. recurse on both sides



#### "Lopsided" Range Tree for Offline Dominance [Impagliazzo-Lovett-Paturi-Schneider'14]

$$T_d(n,m) \leq \max_{\alpha} \left[ T_d((1-\alpha)n,\alpha m) + T_d(\alpha n,(1-\alpha)m) + T_{d-1}((1-\alpha)n,(1-\alpha)m) \right]$$

• Impagliazzo et al.:  $n^{2-1/\widetilde{O}(c^{15})}$  time for n offline queries (for  $d = c \log n$ )

• C. [SODA'15]: 
$$n^{2-1/\widetilde{O}(c)}$$
 time

(subquadratic for  $c \ll \log n$ , i.e.,  $d \ll \log^2 n$ )

(appl'n: integer linear programming with cn constraints in  $(2-1/\widetilde{O}(c))^n$  time)

(but only works for offline...)

- 1. pick next axis  $i \in \{1, \ldots, d\}$
- 2. divide by median *i*-th coord.
- 3. recurse on both sides

- 0. directly build data structure for each possible (d/b)-dimensional projection, with  $b \approx (1/\varepsilon)c \log c$
- 1. pick random axis  $i \in \{1, \ldots, d\}$
- 2. divide by  $(\alpha n)$ -th largest *i*-th coord. with  $\alpha \approx 1/c^4$
- 3. recurse on both sides

# projections 
$$\binom{d}{d/b} = b^{O(d/b)} = b^{O((c \log n)/b)} = n^{O(\varepsilon)}$$
  
 $\Rightarrow$  preproc. time  $n^{1+O(\varepsilon)}$ 

Let  $Q_j(n)$  = time for query pt with j bounded coords

If  $j \leq d/b$  then base case else



Let  $Q_j(n) =$  time for query pt with j bounded coords

If  $j \leq d/b$  then base case else



Let  $Q_j(n) =$  time for query pt with j bounded coords

If  $j \leq d/b$  then base case else



Let  $Q_j(n) =$  time for query pt with j bounded coords

If  $j \leq d/b$  then base case else

$$Q_{j}(n) \leq \max_{\ell} \begin{cases} \frac{\ell}{d} \cdot Q_{j}((1-\alpha)n) + \\ \frac{j-\ell}{d} \cdot (Q_{j}(\alpha n) + Q_{j-1}((1-\alpha)n)) + \\ \frac{d-j}{d} \cdot (Q_{j}(\alpha n) + Q_{j}((1-\alpha)n)) \end{cases}$$

 $\Rightarrow$  expected online query time  $n^{1-1/\widetilde{O}(c)}$ 

(appl'n to APSP:  $\widetilde{O}(n^3/\log^3 n)$  combinatorial alg'm [C., SoCG'17]) (specialization to Boolean case: k-d tree  $\rightarrow$  trie)

# **Open Problems**

- deterministic online?
- lower bounds for geometric tree-based methods?

### *s*-Way Range Tree: Reducing Offline Real Dominance to Boolean [C., SoCG'17]

Assume that offline Boolean dominance (i.e., OV) can be solved in  $n^{2-f(c)}$  time

Let  $T_j(n)$  be time for n data & query pts in  $\mathbb{R}^j \times [s]^{d-j}$ If j = 0 then  $T_0(n) \le n^{2-f(cs)}$  else  $T_j(n) \le sT_j(n/s) + T_{j-1}(n)$ Set  $s = c^4$  $\Rightarrow \boxed{n^{2-f(c^5)+O(1/c)}}$  time for offline real dominance

## **Two Approaches**

# Part I. Comp. Geometry Techniques (k-d trees, range trees)

#### Part II. Polynomial Method

- First reduce # of input vectors from *n* to *n/s*, by treating each group of *s* vectors as one
- ⇒ given sets A, B of n/s vectors in  $\{0, 1\}^{ds}$ , evaluate f(a, b) for each  $a \in A, b \in B$ , for this "funny" function

$$f(a,b) = \bigwedge_{i,j\in[s]} \bigwedge_{k\in[d]} (a_{ik} \wedge b_{jk})$$

 $\Rightarrow$  "funny" rect. matrix multiplication problem

- If we can express f as polynomial, "funny" rect. matrix multiplication reduces to standard rect. matrix multiplication
- Example:

$$f(a,b) = a_1b_2 + 4a_2b_1b_2 + 3a_1a_3b_1 - 5a_2b_1b_3$$
  
=  $(a_1, 4a_2, 3a_1a_3, -5a_2) \cdot (b_2, b_1b_2, b_1, b_1b_3)$ 

- new dim. = **#** of monomials
- $\widetilde{O}((n/s)^2)$  time if # of monomials  $\ll (n/s)^{0.1}...$

• New Problem: express

$$f(a,b) = \bigwedge_{i,j\in[s]} \bigvee_{k\in[d]} (a_{ik} \wedge b_{jk})$$

as a polynomial with small # of monomials degree

• New Problem: express

AND-of-OR
$$(x) = \bigwedge_{\ell \in [s^2]} \bigvee_{k \in [d]} x_{\ell k}$$

as a polynomial with small degree

• Naive Sol'n:

$$\sum_{\ell} \left( 1 - \prod_{k \in [d]} (1 - x_{\ell k}) \right)$$

 $\Rightarrow$  degree d

• New Problem: express

AND-of-OR
$$(x) = \bigwedge_{\ell \in [s^2]} \bigvee_{k \in [d]} x_{\ell k}$$

as a polynomial with small degree

- Rand. Sol'n: by Razborov–Smolensky's trick ('87)
  - replace each OR with random linear combination in  $\mathbb{F}_2$
  - repeat  $\log(100s^2)$  times to lower error prob. to  $1/(100s^2)$
  - replace AND with another random linear combination in  $\mathbb{F}_2$

 $\Rightarrow$  degree  $O(\log s)$ 

• degree  $O(\log s)$ 

• # monomials 
$$\approx s^2 \cdot \begin{pmatrix} d \\ O(\log s) \end{pmatrix}$$
  
=  $(\frac{d}{\log s})^{O(\log s)}$   
=  $(c/\alpha)^{O(\alpha \log n)}$  for  $d = c \log n, \ s = n^{\alpha}$   
=  $n^{O(\alpha \log(c/\alpha))}$   
 $\ll (n/s)^{0.1}$  for  $\alpha \approx 1/O(\log c)$   
 $\Rightarrow \widetilde{O}((n/s)^2) = \boxed{n^{2-1/O(\log c)}}$  rand. time  
(better than  $n^2$ /poly(d) when  $d \ll 2^{\sqrt{\log n}}$ )  
(similar ideas used in Williams's APSP alg'm [STOC'14] in

 $n^3/2^{\Omega(\sqrt{\log n})}$  time)

- Derandomization [C.–Williams, SODA'16]
  - use  $\varepsilon$ -biased space for the random linear combinations in  $\mathbb{F}_2$
  - sum over entire sample space
  - use modulus-amplifying polynomials before summing
- Extends to counting problem #OV (via SUM-of-OR)

(appl'ns: SAT & #SAT with cn clauses in  $(2-1/O(\log c))^n$  time, kSAT & #kSAT in  $(2-1/O(k))^n$  time)

• New Problem: express

$$f(a,b) = \bigwedge_{i,j\in[s]} \left[ \sum_{k\in[d]} (a_{ik} - b_{jk})^2 \ge t \right]$$

as a polynomial with small degree

• New Problem: express

AND-of-THR
$$(x) = \bigwedge_{\ell \in [s^2]} \left[ \sum_{k \in [d]} x_{\ell k} \le t \right]$$

as a polynomial with small degree

- Rand. Sol'n 1: [Alman–Williams]
  - replace AND with sum
  - for each THR, take random sample of size d/2 & recurse
  - if count  $\in t \pm O(\sqrt{d \log s})$ , use interpolating polynomial

 $\Rightarrow$  degree  $O(\sqrt{d \log s})$ 

• New Problem: express

AND-of-THR
$$(x) = \bigwedge_{\ell \in [s^2]} \left[ \sum_{k \in [d]} x_{\ell k} \le t \right]$$

Г

as a polynomial with small degree

 Simple Det. Sol'n 2: [Alman–C.–Williams]  $e^{q/\sqrt{d}}$ 

sum of Chebyshev polynomials

$$\Rightarrow$$
 degree  $O(\sqrt{d} \log s)$ 

• New Problem: express

AND-of-THR
$$(x) = \bigwedge_{\ell \in [s^2]} \left[ \sum_{k \in [d]} x_{\ell k} \le t \right]$$

as a polynomial with small degree

- Combined Sol'n 3: [Alman–C.–Williams]
  - for each THR, take random sample of size  $r = d^{2/3} \log^{1/3} s$
  - use Sol'n 1 on sample
  - if count  $\in t \pm O((d/\sqrt{r})\sqrt{\log s})$ , use Chebyshev polynomial

 $\Rightarrow$  degree  $O(d^{1/3} \log^{2/3} s)$ 

• degree 
$$O(d^{1/3} \log^{2/3} s)$$

• # monomials  $\approx s^2 \cdot \left( \frac{d}{O(d^{1/3} \log^{2/3} s)} \right)$  $= (\frac{d}{\log s})^{O(d^{1/3}\log^{2/3}s)}$  $\leq (c/\alpha)^{O(c^{1/3}\alpha^{2/3}\log n)}$  for  $d = c\log n, \ s = n^{\alpha}$  $= n^{\widetilde{O}(c^{1/3}\alpha^{2/3})}$  $\ll (n/s)^{0.1}$ for  $\alpha \approx 1/\tilde{O}(\sqrt{c})$  $\Rightarrow \widetilde{O}((n/s)^2) = \left| n^{2-1/\widetilde{O}(\sqrt{c})} \right|$  rand. time

(subquadratic when  $c \ll \log^2 n$ , i.e.,  $d \ll \log^3 n$ )

- extends to offline  $\ell_1$  nearest neighbor in  $[U]^d$  in  $n^{2-1/\widetilde{O}(\sqrt{cU})}$  rand. time
- offline (1+ε)-approximate (l<sub>1</sub> or l<sub>2</sub>) nearest neighbor in n<sup>2-Ω̃(ε<sup>-1/3</sup>)</sup> rand. time (via AND-of-Approx-THR) (improving over Valiant [FOCS'12] & LSH for small ε)

(appl'n: MAX-SAT with cn clauses in  $(2 - 1/\widetilde{O}(c^{1/3}))^n$  time) (appl'n: MAX-3-SAT with cn clauses in  $(2 - 1/\text{polylog } c)^n$  time)

## **Open Problems**

- derandomize?
- improve  $d^{1/3}$  degree for AND-of-THR?
- $\ell_1$  nearest neighbor search for larger universe U?
- beat LSH for offline 2-approximate nearest neighbor?
- online? (Larsen–Williams [SODA'17] solved online Boolean OV)
- better offline dominance: disprove OV/SETH??
- non-orthogonal problems are harder

(Williams [SODA'18]: offline  $\ell_2$  nearest neighbor search for  $d = \omega (\log \log n)^2$  can't be solved in  $O(n^{2-\delta})$  time, assuming OV conjecture)