Geometric Problems in Moderate Dimensions

Timothy Chan
UIUC

Basic Problems in Comp. Geometry

- Orthogonal range search
- preprocess n points in \mathbb{R}^{d} s.t. we can detect, or count, or report points inside a query axis-aligned box

Basic Problems in Comp. Geometry

- Orthogonal range search
- Dominance range search
- preprocess n points in \mathbb{R}^{d} s.t. we can detect, or count, or report points dominated by q, i.e., inside $\left(-\infty, q_{1}\right] \times \cdots \times\left(-\infty, q_{d}\right]$ (many geom. appl'ns: computing skylines, ...) (orthogonal range search in \mathbb{R}^{d} reduces to dominance in $\mathbb{R}^{2 d}$)

Basic Problems in Comp. Geometry

- Orthogonal range search
- Dominance range search
- ℓ_{∞} nearest neighbor search
- preprocess n points in \mathbb{R}^{d} s.t. we can find ℓ_{∞}-closest point to a query point

Basic Problems in Comp. Geometry

- Orthogonal range search
- Dominance range search
- ℓ_{∞} nearest neighbor search
- ℓ_{1} nearest neighbor search

Basic Problems in Comp. Geometry

- Non-orthogonal range search
- Halfspace range search

Basic Problems in Comp. Geometry

- Non-orthogonal range search
- Halfspace range search
- Ball range search

Basic Problems in Comp. Geometry

- Non-orthogonal range search
- Halfspace range search
- Ball range search
- ℓ_{2} nearest neighbor search
(many geom. appl'ns: bichromatic closest/farthest pair, min spanning tree, convex hull, ...)

Setting

- focus on orthogonal problems
- focus on exact, not approximate
- focus on upper bounds
- n online vs. offline queries

Low Dimensions:
 Classical Results from Comp. Geometry

- Orthogonal range search:

$$
d^{O(d)} \cdot n \log ^{O(d)} n \text { time }
$$

(but meaningful only when $d \leq \delta_{0} \log n \ldots$)

- Non-orthogonal range search:

$$
d^{O(d)} \cdot n^{2-1 / O(d)} \text { time }
$$

non?

- Boolean orthogonal vector problem (OV)
- given sets A, B of n vectors in $\{0,1\}^{d}$, decide $\exists a \in A, b \in B$ s.t. $a \cdot b=0$
(appl'ns: subset queries, partial match queries for strings, ...) (equiv. to Boolean version of offline dominance)
(OV Conjecture: no $O\left(n^{2-\delta}\right)$ alg'm for $d=\omega(\log n)$)
- Boolean matrix multiplication
- given matrices $A \in\{0,1\}^{n \times n}, B \in\{0,1\}^{n \times n}$, compute $c_{i j}=\vee_{k}\left(a_{i k} \wedge b_{k j}\right)$ for each i, j

non?

- Boolean orthogonal vector problem (OV)
- given sets A, B of n vectors in $\{0,1\}^{d}$, decide $\exists a \in A, b \in B$ s.t. $a \cdot b=0$
(appl'ns: subset queries, partial match queries for strings, ...) (equiv. to Boolean version of offline dominance)
(OV Conjecture: no $O\left(n^{2-\delta}\right)$ alg'm for $d=\omega(\log n)$)
- Boolean matrix multiplication
- given matrices $A \in\{0,1\}^{n \times d}, B \in\{0,1\}^{d \times n}$, compute

$$
c_{i j}=\vee_{k}\left(a_{i k} \wedge b_{k j}\right) \text { for each } i, j
$$

Connection to Non-Geom. Problems

- Boolean orthogonal vector problem (OV)
- given sets A, B of n vectors in $\{0,1\}^{d}$, decide $\exists a \in A, b \in B$ s.t. $a \cdot b=0$
(appl'ns: subset queries, partial match queries for strings, ...) (equiv. to Boolean version of offline dominance)
(OV Conjecture: no $O\left(n^{2-\delta}\right)$ alg'm for $d=\omega(\log n)$)
- Boolean matrix multiplication
- i.e., given sets A, B of n vectors in $\{0,1\}^{d}$, decide whether $a \cdot b=0$ for each $a \in A, b \in B$

Connection to Non-Geom. Problems

- All-pairs shortest paths (APSP)

Connection to Non-Geom. Problems

- All-pairs shortest paths (APSP) or (min,+)-matrix multiplication
- given matrices $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times n}$, compute $c_{i j}=\min _{k}\left(a_{i k}+b_{k j}\right)$ for each i, j
(appl'ns: graph diameter/radius/etc., max 2D subarray, language edit distance, min-weight triangulation of polygons, ...)

Connection to Non-Geom. Problems

- All-pairs shortest paths (APSP) or (min,+)-matrix multiplication
- given matrices $A \in \mathbb{R}^{n \times d}, B \in \mathbb{R}^{d \times n}$, compute $c_{i j}=\min _{k}\left(a_{i k}+b_{k j}\right)$ for each i, j

Connection to Non-Geom. Problems

- All-pairs shortest paths (APSP) or (min,+)-matrix multiplication
- i.e., given sets A, B of n vectors in \mathbb{R}^{d}, compute $\min _{k}\left(a_{k}+b_{k}\right)$ for each $a \in A, b \in B$
(reduces to d instances of offline dominance by "Fredman's trick":

$$
\left.a_{k_{0}}+b_{k_{0}} \leq a_{k}+b_{k} \Longleftrightarrow a_{k_{0}}-a_{k} \leq b_{k}-b_{k_{0}}\right)
$$

Connection to Non-Geom. Problems

- (min,+)-convolution
- given vectors $a, b \in \mathbb{R}^{n}$, compute $c_{i}=\min _{k}\left(a_{k}+b_{i-k}\right)$ for each i
(appl'ns: jumbled string matching, knapsack, min k-enclosing rectangles, ...)
(reduces to $O(\sqrt{n})($ min, +)-matrix multiplication of $\sqrt{n} \times \sqrt{n}$ matrices)
- 3SUM
- given vectors $a, b, c \in \mathbb{R}^{n}$, decide $\exists i, j, k$ s.t. $a_{i}+b_{j}=c_{k}$

Connection to Non-Geom. Problems

- SAT for sparse instances
- given CNF formula in n Boolean vars \& cn clauses, decide \exists satisfying assignment
(reduces to OV with $2^{n / 2}$ Boolean vectors in $c n$ dimensions)
- for each partial assignment of first $n / 2$ vars, define vector a with $a_{i}=0$ iff i-th clause is already satisfied;
- for each partial assignment of last $n / 2$ vars, define vector b with $b_{i}=0$ iff i-th clause is already satisfied)

- SAT for sparse instances
- given CNF formula in n Boolean vars \& cn clauses, decide \exists satisfying assignment
(reduces to OV with $2^{n / 2}$ Boolean vectors in $c n$ dimensions)
- k SAT
(reduces to sparse case)
(SETH Conjecture: no $(2-\delta)^{n}$ alg'm for $k=\omega(1)$)
- MAX-SAT for sparse instances
- MAX-kSAT

Connection to Non-Geom. Problems

- Integer 0-1 linear programming for sparse instances
- given $c n$ linear inequalities with real coeffs. over $n 0-1$ vars, decide \exists satisfying assignment
(reduces to dominance with $2^{n / 2}$ real vectors in $c n$ dimensions)

High Dimensions: By Fast Matrix Multiplication

- offline dominance in Boolean case (i.e., OV) can be trivially solved by Boolean rect. matrix multiplication in $M(n, d, n)$ time
- $M(n, n, n)=O\left(n^{2.373}\right)$
- $M(n, d, n)=\widetilde{O}\left(n^{2}\right)$ for $d \approx n^{0.1}$
- offline dominance for real case can be reduced to Boolean case, in $O\left(\min _{s}\left(M(n, d s, n)+d n^{2} / s\right)\right)$ time [Matoušek'91]
- by dividing into s buckets of size n / s
(but not clear how to beat n^{2} time...)

Moderate Dimensions: This Talk

- subquadratic time for d beyond logarithmic?
- let $d=c \log n$ (c not necessarily constant)

Two Approaches

Part I. Comp. Geometry Techniques (k-d trees, range trees)

Part II. Polynomial Method

k-d Trees [75]

1. pick next axis $i \in\{1, \ldots, d\}$
2. divide by median i-th coord.
3. recurse on both sides

preproc. time $O(d n \log n)$ dominance query time $O\left(n^{1-1 / d}\right)$

Range Trees [79]

0 . recurse on projection along 1st coord.

1. divide by median 1st coord.
2. recurse on both sides

$$
\begin{aligned}
& P_{d}(n) \leq 2 P_{d}(n / 2)+P_{d-1}(n / 2) \Rightarrow O\left(n \log ^{d} n\right) \\
& Q_{d}(n) \leq Q_{d}(n / 2)+Q_{d-1}(n / 2) \Rightarrow O\left(\log ^{d} n\right)
\end{aligned}
$$

"Lopsided" Range Tree for Offline Dominance [Impagliazzo-Lovett-Paturi-Schneider'14]

0 . recurse on projection along 1st coord.

1. divide by median 1st coord.
2. recurse on both sides

"Lopsided" Range Tree for Offline Dominance [Impagliazzo-Lovett-Paturi-Schneider'14]

0 . recurse on projection along 1st coord.

1. divide by (αn)-th largest 1 st coord. for some α
2. recurse on both sides

$$
\begin{gathered}
T_{d}(n, m) \leq \max _{\alpha}\left[T_{d}((1-\alpha) n, \alpha m)+T_{d}(\alpha n,(1-\alpha) m)\right. \\
\left.+T_{d-1}((1-\alpha) n,(1-\alpha) m)\right]
\end{gathered}
$$

"Lopsided" Range Tree for Offline

 Dominance [Impagliazzo-Lovett-Paturi-Schneider'14]$$
\begin{gathered}
T_{d}(n, m) \leq \max _{\alpha}\left[T_{d}((1-\alpha) n, \alpha m)+T_{d}(\alpha n,(1-\alpha) m)\right. \\
\left.+T_{d-1}((1-\alpha) n,(1-\alpha) m)\right]
\end{gathered}
$$

- Impagliazzo et al.: $n^{2-1 / \widetilde{O}\left(c^{15}\right)}$ time for n offline queries (for $d=c \log n$)
- C. [SODA'15]: $n^{2-1 / \widetilde{O}(c)}$ time
(subquadratic for $c \ll \log n$, i.e., $d \ll \log ^{2} n$)
(appl'n: integer linear programming with cn constraints in ($2-1 / \widetilde{O}(c))^{n}$ time)
(but only works for offline...)

New "Lopsided" k-d Tree for Online Dominance [c., socG'17]

1. pick next axis $i \in\{1, \ldots, d\}$
2. divide by median i-th coord.
3. recurse on both sides

New "Lopsided" k-d Tree for Online Dominance [c., socG'17]

0 . directly build data structure for each possible (d / b)-dimensional projection, with $b \approx(1 / \varepsilon) c \log c$

1. pick random axis $i \in\{1, \ldots, d\}$
2. divide by (αn)-th largest i-th coord. with $\alpha \approx 1 / c^{4}$
3. recurse on both sides
\# projections $\binom{d}{d / b}=b^{O(d / b)}=b^{O((c \log n) / b)}=n^{O(\varepsilon)}$
\Rightarrow preproc. time $n^{1+O(\varepsilon)}$

New "Lopsided" k-d Tree for Online Dominance [c., socGit]

Let $Q_{j}(n)=$ time for query pt with j bounded coords
If $j \leq d / b$ then base case else
$Q_{j}(n) \leq \max _{\ell}\left\{\quad Q_{j}((1-\alpha) n)\right.$

New "Lopsided" k-d Tree for Online Dominance [c., socGit]

Let $Q_{j}(n)=$ time for query pt with j bounded coords If $j \leq d / b$ then base case else

$$
Q_{j}(n) \leq \max _{\ell}\left\{\begin{array}{l}
Q_{j}((1-\alpha) n) \\
\left(Q_{j}(\alpha n)+Q_{j-1}((1-\alpha) n)\right)
\end{array}\right.
$$

$$
(1-\alpha) n \text { data pts } \quad \alpha n \text { data pts }
$$

New "Lopsided" k-d Tree for Online Dominance [c., socG'17]

Let $Q_{j}(n)=$ time for query pt with j bounded coords If $j \leq d / b$ then base case else

$$
Q_{j}(n) \leq \max _{\ell}\left\{\begin{array}{l}
Q_{j}((1-\alpha) n) \\
\begin{array}{l}
\left(Q_{j}(\alpha n)+Q_{j-1}((1-\alpha) n)\right) \\
\left(Q_{j}(\alpha n)+Q_{j}((1-\alpha) n)\right)
\end{array} \\
\qquad \begin{array}{c|c}
\bullet & \\
\bullet & \bullet \\
\bullet & \bullet \\
(1-\alpha) n \text { data pts } & \alpha n \text { data pts }
\end{array}
\end{array}\right.
$$

New "Lopsided" k-d Tree for Online Dominance [c., socG'17]

Let $Q_{j}(n)=$ time for query pt with j bounded coords If $j \leq d / b$ then base case else

$$
Q_{j}(n) \leq \max _{\ell}\left\{\begin{array}{cl}
\frac{\ell}{d} \cdot & Q_{j}((1-\alpha) n)+ \\
\frac{j-\ell}{d} \cdot & \left(Q_{j}(\alpha n)+Q_{j-1}((1-\alpha) n)\right)+ \\
\frac{d-j}{d} \cdot & \left(Q_{j}(\alpha n)+Q_{j}((1-\alpha) n)\right)
\end{array}\right.
$$

\Rightarrow expected online query time $n^{1-1 / \widetilde{O}(c)}$
(appl'n to APSP: $\widetilde{O}\left(n^{3} / \log ^{3} n\right)$ combinatorial alg'm [C., SoCG'17]) (specialization to Boolean case: k -d tree \rightarrow trie)

Open Problems

- deterministic online?
- lower bounds for geometric tree-based methods?

s-Way Range Tree: Reducing Offline Real Dominance to Boolean [c., socG'17]

Assume that offline Boolean dominance (i.e., OV) can be solved in $n^{2-f(c)}$ time

Let $T_{j}(n)$ be time for n data \& query pts in $\mathbb{R}^{j} \times[s]^{d-j}$ If $j=0$ then $T_{0}(n) \leq n^{2-f(c s)}$ else

$$
T_{j}(n) \leq s T_{j}(n / s)+T_{j-1}(n)
$$

Set $s=c^{4}$
$\Rightarrow n^{2-f\left(c^{5}\right)+O(1 / c)}$ time for offline real dominance

Two Approaches

Part I. Comp. Geometry Techniques (k-d trees, range trees)

Part II. Polynomial Method

Boolean OV [Abboud-Williams-Yu, SodA'15]

- First reduce \# of input vectors from n to n / s, by treating each group of s vectors as one
\Rightarrow given sets A, B of n / s vectors in $\{0,1\}^{d s}$, evaluate $f(a, b)$ for each $a \in A, b \in B$, for this "funny" function

$$
f(a, b)=\wedge_{i, j \in[s]} \bigvee_{k \in[d]}\left(a_{i k} \wedge b_{j k}\right)
$$

\Rightarrow "funny" rect. matrix multiplication problem

Boolean OV [Abboud-Williams-Yu, SoDA'15]

- If we can express f as polynomial, "funny" rect. matrix multiplication reduces to standard rect. matrix multiplication
- Example:

$$
\begin{aligned}
f(a, b) & =a_{1} b_{2}+4 a_{2} b_{1} b_{2}+3 a_{1} a_{3} b_{1}-5 a_{2} b_{1} b_{3} \\
& =\left(a_{1}, 4 a_{2}, 3 a_{1} a_{3},-5 a_{2}\right) \cdot\left(b_{2}, b_{1} b_{2}, b_{1}, b_{1} b_{3}\right)
\end{aligned}
$$

- new dim. $=$ \# of monomials
- $\widetilde{O}\left((n / s)^{2}\right)$ time if \# of monomials $\ll(n / s)^{0.1} \ldots$

Boolean OV [Abboud-Williams-Yu, SodA'15]

- New Problem: express

$$
f(a, b)=\wedge_{i, j \in[s]} \bigvee_{k \in[d]}\left(a_{i k} \wedge b_{j k}\right)
$$

as a polynomial with small \# of monomials degree

Boolean OV [Abboud-Williams-Yu, SodA'15]

- New Problem: express

$$
\text { AND-of-OR }(x)=\wedge_{\ell \in\left[s^{2}\right]} \bigvee_{k \in[d]} x_{\ell k}
$$

as a polynomial with small degree

- Naive Sol'n:

$$
\sum_{\ell}\left(1-\prod_{k \in[d]}\left(1-x_{\ell k}\right)\right)
$$

\Rightarrow degree d

Boolean OV [Abboud-Williams-Yu, SodA'15]

- New Problem: express

$$
\operatorname{AND-of-OR}(x)=\bigwedge_{\ell \in\left[s^{2}\right]} V_{k \in[d]} x_{\ell k}
$$

as a polynomial with small degree

- Rand. Sol'n: by Razborov-Smolensky's trick ('87)
- replace each OR with random linear combination in \mathbb{F}_{2}
- repeat $\log \left(100 s^{2}\right)$ times to lower error prob. to $1 /\left(100 s^{2}\right)$
- replace AND with another random linear combination in \mathbb{F}_{2}
\Rightarrow degree $O(\log s)$

Boolean OV [Abboud-Williams-Yu, SodA'15]

- degree $O(\log s)$
- \# monomials $\approx s^{2} \cdot\binom{d}{O(\log s)}$

$$
\begin{array}{ll}
=\left(\frac{d}{\log s}\right)^{O(\log s)} & \\
=(c / \alpha)^{O(\alpha \log n)} & \text { for } d=c \log n, s=n^{\alpha} \\
=n^{O(\alpha \log (c / \alpha))} & \\
\ll(n / s)^{0.1} & \text { for } \alpha \approx 1 / O(\log c)
\end{array}
$$

$\Rightarrow \widetilde{O}\left((n / s)^{2}\right)=n^{2-1 / O(\log c)}$ rand. time
(better than $n^{2} / \operatorname{poly}(d)$ when $d \ll 2^{\sqrt{\log n}}$) (similar ideas used in Williams's APSP alg'm [STOC'14] in $n^{3} / 2^{\Omega(\sqrt{\log n})}$ time)

Boolean OV [Abboud-Williams-Yu, SodA'15]

- Derandomization [C.-Williams, SODA'16]
- use ε-biased space for the random linear combinations in \mathbb{F}_{2}
- sum over entire sample space
- use modulus-amplifying polynomials before summing
- Extends to counting problem \#OV (via SUM-of-OR) (appl'ns: SAT \& \#SAT with $c n$ clauses in $(2-1 / O(\log c))^{n}$ time, k SAT \& \#kSAT in $(2-1 / O(k))^{n}$ time)

Offline Hamming Nearest Neighbor

[Alman-Williams, FOCS'15; Alman-C.-Williams, FOCS'16]

- New Problem: express

$$
f(a, b)=\bigwedge_{i, j \in[s]}\left[\sum_{k \in[d]}\left(a_{i k}-b_{j k}\right)^{2} \geq t\right]
$$

as a polynomial with small degree

Offline Hamming Nearest Neighbor

[Alman-Williams, FOCS'15; Alman-C.-Williams, FOCS'16]

- New Problem: express

$$
\operatorname{AND-of-THR}(x)=\bigwedge_{\ell \in\left[s^{2}\right]}\left[\sum_{k \in[d]} x_{\ell k} \leq t\right]
$$

as a polynomial with small degree

- Rand. Sol'n 1: [Alman-Williams]
- replace AND with sum
- for each THR, take random sample of size $d / 2 \&$ recurse
- if count $\in t \pm O(\sqrt{d \log s})$, use interpolating polynomial
\Rightarrow degree $O(\sqrt{d \log s})$

Offline Hamming Nearest Neighbor

[Alman-Williams, FOCS'15; Alman-C.-Williams, FOCS'16]

- New Problem: express

$$
\operatorname{AND-of-THR}(x)=\bigwedge_{\ell \in\left[s^{2}\right]}\left[\sum_{k \in[d]} x_{\ell k} \leq t\right]
$$

as a polynomial with small degree

- Simple Det. Sol'n 2: [Alman-C.-Williams]
- sum of Chebyshev polynomials
\Rightarrow degree $O(\sqrt{d} \log s)$

Offline Hamming Nearest Neighbor

[Alman-Williams, FOCS'15; Alman-C.-Williams, FOCS'16]

- New Problem: express

$$
\operatorname{AND-of-THR}(x)=\bigwedge_{\ell \in\left[s^{2}\right]}\left[\sum_{k \in[d]} x_{\ell k} \leq t\right]
$$

as a polynomial with small degree

- Combined Sol'n 3: [Alman-C.-Williams]
- for each THR, take random sample of size $r=d^{2 / 3} \log ^{1 / 3} s$
- use Sol'n 1 on sample
- if count $\in t \pm O((d / \sqrt{r}) \sqrt{\log s})$, use Chebyshev polynomial \Rightarrow degree $O\left(d^{1 / 3} \log ^{2 / 3} s\right)$

Offline Hamming Nearest Neighbor

[Alman-Williams, FOCS'15; Alman-C.-Williams, FOCS'16]

- degree $O\left(d^{1 / 3} \log ^{2 / 3} s\right)$
- \# monomials $\approx s^{2} \cdot\left(O\left(d^{1 / 3}{ }^{d} \log ^{2 / 3} s\right)\right)$
$=\left(\frac{d}{\log s}\right)^{O\left(d^{1 / 3} \log ^{2 / 3} s\right)}$
$\leq(c / \alpha)^{O\left(c^{1 / 3} \alpha^{2 / 3} \log n\right)}$ for $d=c \log n, s=n^{\alpha}$
$=n^{\widetilde{O}\left(c^{1 / 3} \alpha^{2 / 3}\right)}$
$\ll(n / s)^{0.1} \quad$ for $\alpha \approx 1 / \widetilde{O}(\sqrt{c})$
$\Rightarrow \widetilde{O}\left((n / s)^{2}\right)=n^{2-1 / \widetilde{O}(\sqrt{c})}$ rand. time
(subquadratic when $c \ll \log ^{2} n$, i.e., $d \ll \log ^{3} n$)

Offline Hamming Nearest Neighbor

 [Alman-Williams, FOCS'15; Alman-C.-Williams, FOCS'16]- extends to offline ℓ_{1} nearest neighbor in $[U]^{d}$ in $n^{2-1 / \widetilde{O}(\sqrt{c U})}$ rand. time
- offline $(1+\varepsilon)$-approximate (ℓ_{1} or ℓ_{2}) nearest neighbor in $n^{2-\widetilde{\Omega}\left(\varepsilon^{-1 / 3}\right)}$ rand. time (via AND-of-Approx-THR) (improving over Valiant [FOCS'12] \& LSH for small ε)
(appl'n: MAX-SAT with $c n$ clauses in $\left(2-1 / \widetilde{O}\left(c^{1 / 3}\right)\right)^{n}$ time) (appl'n: MAX-3-SAT with $c n$ clauses in $(2-1 / \text { polylog } c)^{n}$ time)

Open Problems

- derandomize?
- improve $d^{1 / 3}$ degree for AND-of-THR?
- ℓ_{1} nearest neighbor search for larger universe U ?
- beat LSH for offline 2-approximate nearest neighbor?
- online? (Larsen-Williams [SODA'17] solved online Boolean OV)
- better offline dominance: disprove OV/SETH??
- non-orthogonal problems are harder
(Williams [SODA'18]: offline ℓ_{2} nearest neighbor search for $d=\omega(\log \log n)^{2}$ can't be solved in $O\left(n^{2-\delta}\right)$ time, assuming OV conjecture)

