Geometric Problems in
Moderate Dimensions

Timothy Chan
UIUC

Basic Problems in Comp. Geometry

e Orthogonal range search

— preprocess n points in R? s.t. we can detect, or count, or report
points inside a query axis-aligned box

Basic Problems in Comp. Geometry

e Orthogonal range search
e Dominance range search

— preprocess n points in R? s.t. we can detect, or count, or report
points dominated by q, i.e., inside (—oo, ¢1] X - -+ X (—o0, 4]

(many geom. appl'ns: computing skylines, ...)

(orthogonal range search in R reduces to dominance in R2%)

Basic Problems in Comp. Geometry

e Orthogonal range search

e Dominance range search

e /~o Nearest neighbor search

— preprocess n points in R? s.t. we can find ¢oo-closest point to a
query point

Basic Problems in Comp. Geometry

e Orthogonal range search
e Dominance range search
e /~o Nearest neighbor search

e /1 nearest neighbor search

Basic Problems in Comp. Geometry

e Non-orthogonal range search
e Halfspace range search

Basic Problems in Comp. Geometry

e Non-orthogonal range search
e Halfspace range search
e Ball range search

Basic Problems in Comp. Geometry

e Non-orthogonal range search
e Halfspace range search

e Ball range search

e /> nearest neighbor search

(many geom. appl’'ns: bichromatic closest/farthest pair,
min spanning tree, convex hull, ...)

Setting

e focus on orthogonal problems
e focus on exact, not approximate
e focus on upper bounds

e n online vs. offline queries

| Low Dimensions:
Classical Results from Comp. Geometry

e Orthogonal range search:
dO@) . 1 109D p, time
(but meaningful only when d < §glogn...)

e Non-orthogonal range search:

40(ad) . ,2—1/0(d) time

Connection to Non-Geom. Problems

e Boolean orthogonal vector problem (OV)
— given sets A, B of n vectors in {0, 1}¢, decide 3a € A,b € B
St.a-b=20
(appl’'ns: subset queries, partial match queries for strings, ...)
(equiv. to Boolean version of offline dominance)
(OV Conjecture: no O(n2—2) alg'm for d = w(log n))

e Boolean matrix multiplication

— given matrices A € {0,1}"*"™ B € {0, 1}""*™ compute
cij = Vi(a;i A by;) foreach i, j

Connection to Non-Geom. Problems

e Boolean orthogonal vector problem (OV)
— given sets A, B of n vectors in {0, 1}¢, decide 3a € A,b € B
St.a-b=20
(appl’'ns: subset queries, partial match queries for strings, ...)
(equiv. to Boolean version of offline dominance)
(OV Conjecture: no O(n2—2) alg'm for d = w(log n))

e Boolean matrix multiplication

— given matrices A € {0, 11"*4 B ¢ {0, 1}¢X™ compute
cij = Vi(a;r A by;) foreach i, j

Connection to Non-Geom. Problems

e Boolean orthogonal vector problem (OV)
— given sets A, B of n vectors in {0, 1}¢, decide 3a € A,b € B
St.a-b=20
(appl’'ns: subset queries, partial match queries for strings, ...)
(equiv. to Boolean version of offline dominance)
(OV Conjecture: no O(n2—2) alg'm for d = w(log n))

e Boolean matrix multiplication

— i.e., given sets A, B of n vectors in {0, 11¢, decide whether
a-b=0foreachae A,be B

Connection to Non-Geom. Problems

e All-pairs shortest paths (APSP)

Connection to Non-Geom. Problems

e All-pairs shortest paths (APSP)
or (min,+)-matrix multiplication

— given matrices A € R"*" B € R"*" compute
Cij = mink(aik + bkg) for each i, j

(appl’'ns: graph diameter/radius/etc., max 2D subarray, language
edit distance, min-weight triangulation of polygons, ...)

Connection to Non-Geom. Problems

e All-pairs shortest paths (APSP)
or (min,+)-matrix multiplication

— given matrices A € R"*4 B € RYX" compute
Cij = mink(aik + bk]) for each i, j

Connection to Non-Geom. Problems

e All-pairs shortest paths (APSP)
or (min,+)-matrix multiplication
— i.e., given sets A, B of n vectors in R, compute
ming(ag + b)) foreacha € A,b € B

(reduces to d instances of offline dominance by
“Fredman’s trick”:

ako—l—bkogak—l—bk < ako—akgbk—bko)

Connection to Non-Geom. Problems

e (min,+)-convolution

— given vectors a, b € R™, compute ¢; = ming(ag + b;_.) for
each ¢

(appl’ns: jumbled string matching, knapsack, min k-enclosing
rectangles, ...)

(reduces to O(y/n) (min,+)-matrix multiplication of /n x v/n

matrices)

e 3SUM

— given vectors a, b, c € R", decide 3¢, j, k s.t. a; + b; = ¢y,

Connection to Non-Geom. Problems

e SAT for sparse instances

— given CNF formula in n» Boolean vars & cn clauses, decide 3
satisfying assignment

(reduces to OV with 2"/2 Boolean vectors in cn dimensions)

— for each partial assignment of first n/2 vars, define vector a
with a; = O iff ¢-th clause is already satisfied;

— for each partial assignment of last n/2 vars, define vector b
with b; = O iff ¢-th clause is already satisfied)

Connection to Non-Geom. Problems

e SAT for sparse instances

— given CNF formula in n» Boolean vars & cn clauses, decide 3
satisfying assignment

(reduces to OV with 2"/2 Boolean vectors in cn dimensions)

o LSAT

(reduces to sparse case)

(SETH Conjecture: no (2 — §)™ alg’m for k = w(1))

o MAX-SAT for sparse instances
o MAX-KSAT

Connection to Non-Geom. Problems

e Integer 0-1 linear programming for sparse instances

— given cn linear inequalities with real coeffs. over n 0-1 vars,
decide 3 satisfying assignment

(reduces to dominance with 27/2 real vectors in cn dimensions)

High Dimensions:
By Fast Matrix Multiplication

e offline dominance in Boolean case (i.e., OV) can be
trivially solved by Boolean rect. matrix multiplication in
M(n,d,n) time

- M(n,n,n) = O(n?373)
— M(n,d,n) = O(n?) for d ~ n91

e Offline dominance for real case can be reduced to
Boolean case, in O(ming(M (n,ds,n) + dn?/s))
time [Matousek’91]

— by dividing into s buckets of size n/s

(but not clear how to beat n? time...)

Moderate Dimensions:
This Talk

e subquadratic time for d beyond logarithmic?

o let d = clogn (c not necessarily constant)

Two Approaches

Part . Comp. Geometry Techniques
(k-d trees, range trees)

K-d Trees 75

1. pick nextaxis¢ € {1,...,d}
2. divide by median :-th coord.
3. recurse on both sides

preproc. time O(dnlogn)
dominance query time O(n1—1/4)

Range Trees 79

0. recurse on along 1st coord.
1. divide by median 1st coord.
2. recurse on both sides

Py(n) < 2Py(n/2) + Py_1(n/2) = O(nlog?n)
Qq(n) < Qq(n/2) + Q4_1(n/2) = O(log?n)

“Lopsided” Range TIree for Offline

Dominance [impagliazzo—Lovett—Paturi-Schneider'14]

0. recurse on along 1st coord.
1. divide by median 1st coord.
2. recurse on both sides

“Lopsided” Range TIree for Offline

Dominance [impagliazzo—Lovett—Paturi-Schneider'14]

0. recurse on along 1st coord.
1. divide by (an)-th largest 1st coord. for some «
2. recurse on both sides

. . choose «

s.t.a=p0

(1—a)n data pts | an data pts
Bm query pts (1—/3)m query pts
Td(na m) < m(%x [Td((l —a)n, am) + Td(()én, (1 —a)m)
+ T4 1((1—a)n, (1 —a)m)]

“Lopsided” Range TIree for Offline

Dominance [impagliazzo—Lovett—Paturi-Schneider'14]

Ty(n,m) < max [Ty((1—a)n,am) + Ty(an, (1—a)m)
+ Ty—1((1—a)n, (1—a)m)]

e Impagliazzo et al.:

n2—1/0(c!)

queries (for d = clogn)

o C. [SODA'15]: n2—1/0(0) time

time for n offline

(subquadratic for ¢ < logn, i.e., d < l0g2 n)

(appl’'n: integer linear programming with cn constraints in

(2—1/0(c))™ time)

(but only works for offline. . .)

New “Lopsided” k-d Tree for Online
Dominance [c., socG'17]

1. pick nextaxis ¢ € {1,...,d}
2. divide by median i-th coord.
3. recurse on both sides

New “Lopsided” k-d Tree for Online
Dominance [c., socG'17]

0. directly build data structure for each possible
(d/b)-dimensional ,with b~ (1/¢)clogc

1. pick random axis ¢ € {1,...,d}

2. divide by (an)-th largest i-th coord. with ov =~ 1/¢c#

3. recurse on both sides

projections (dc/zb) — p0(d/b) — pO((clogn)/b) — ,,O(e)

— preproc. time |n11TO()

New “Lopsided” k-d Tree for Online
Dominance [c., socG'17]

Let Q;(n) = time for query pt with 5 bounded coords
If 7 < d/bthen base case else

Q;j((1—a)n)

Rj(n) < max

(1 — a)n data pts an data pts

New “Lopsided” k-d Tree for Online
Dominance [c., socG'17]

Let Q;(n) = time for query pt with 5 bounded coords
If 7 < d/bthen base case else

Q;j((1—a)n)

Qj(n) < max: (Qj(an) + Q;—1((1—a)n))

(1 — a)n data pts an data pts

New “Lopsided” k-d Tree for Online
Dominance [c., socG'17]

Let Q;(n) = time for query pt with 5 bounded coords
If 7 < d/bthen base case else
Q;j((1—a)n)

Qj(n) < max. (Qj(an) + Q;—1((1—a)n))
(Qj(an) + Q;((1—a)n))

(1 — a)n data pts an data pts

New “Lopsided” k-d Tree for Online
Dominance [c., socG'17]

Let Q;(n) = time for query pt with 5 bounded coords
If 7 < d/bthen base case else
- Q;((1—a)n) +

- (Qj(an) + Q;—1((1—a)n)) +
- (Qj(an) + Q;((1—a)n))

m&IN

Qj(n) < m£a><< 1=

&
Ig‘

— expected online query time | n—1/0()

(appl'n to APSP: O(n3/log3n) combinatorial alg'm [C., SoCG’17])
(specialization to Boolean case: k-d tree — trie)

Open Problems

e deterministic online?

e lower bounds for geometric tree-based methods?

s-Way Range Tree: Reducing Offline
Real Dominance to Boolean ic., soca17]

Assume that offline Boolean dominance (i.e., OV) can be
solved in n2—f(¢) time

Let T;(n) be time for n data & query pts in R7 x [s]¢~
If j = 0 then Th(n) < n2-f(cs) else

Tj(n) < sTj(n/s) +T;_1(n)

Set s = ¢*
— p2-f(c)+0(1/0)

time for offline real dominance

Two Approaches

Part I. Comp. Geometry Techniques
(k-d trees, range trees)

Part Il. Polynomial Method

Boolean OV [abboud-williams—Yu, SODA™15]

e First reduce # of input vectors from n to n/s, by
treating each group of s vectors as one

= given sets A, B of n/s vectors in {0, 1195, evaluate
f(a,b) foreach a € A,b € B, for this “funny” function

fla,0) = AV (a;ANbjg)
i1,7€[s] ke[d]

= “funny” rect. matrix multiplication problem

Boolean OV [abboud-williams—Yu, SODA™15]

e If we can express f as polynomial, “funny” rect. matrix
multiplication reduces to standard rect. matrix
multiplication

e Example:

f(a,b)

a1bo> + 4aob1bo> + 3a1a3b1 — baosbib3

(a1, 4ap, 3aiasz, —5ap) - (b, b1bo, b1, b1b3)

e new dim. = # of monomials

e O((n/s)?) time if # of monomials < (n/s)%1...

Boolean OV [abboud-williams—Yu, SODA™15]

e New Problem: express

fla,b) = AV (a5 Abjg)
i1,7€[s] k€[d]

as a polynomial with small #efmeremials degree

Boolean OV [abboud-williams—Yu, SODA™15]

e New Problem: express

AND-of-OR(z) = A V xy
te[s?] keld]

as a polynomial with small degree

e Naive Sol'n:

> (1 — II (1 - a?ezc))
¢ keld]

= degree d

Boolean OV [abboud-williams—Yu, SODA™15]

e New Problem: express

AND-of-OR(z) = A V xy
ve[s?] ke[d]

as a polynomial with small degree

e Rand. Sol'n: by Razborov—Smolensky’s trick ('87)

— replace each OR with random linear combination in F»
— repeat log(100s2) times to lower error prob. to 1/(100s2)
— replace AND with another random linear combination in F»

= degree O(log s)

Boolean OV [abboud-williams—Yu, SODA™15]

e degree | O(log s)

e # monomials ~ s2 . (O(Igg S>)
— (OgS)O(Iog s)
= (c/a)O(O‘log n) ford = clogn, s = n®
— nO0(alog(c/a))
< (n/s)01 fora =~ 1/0(logc)

= 0((n/s)?) = n2—1/0(10g¢) rand. time

(better than n? /poly(d) when d < 2V109m)

(similar ideas used in Williams’s APSP alg’'m [STOC’14] in
n3/282(VIogn) {ime)

Boolean OV [abboud-williams—Yu, SODA™15]

e Derandomization [C.—Williams, SODA’16]

— use e-biased space for the random linear combinations in F»
— sum over entire sample space
— use modulus-amplifying polynomials before summing

e Extends to counting problem #OV (via SUM-0f-OR)

(appl'ns: SAT & #SAT with cn clauses in (2—1/0(log ¢))™ time,
kSAT & #kSAT in (2—1/0(k))"™ time)

Offline Hamming Nearest Neighbor
[Alman—Williams, FOCS’15; Alman—C.—Williams, FOCS’16]

e New Problem: express

fla,b) = A | X (ag—bjp)* >t
i,j€s] [keld] _

as a polynomial with small degree

Offline Hamming Nearest Neighbor
[Alman—Williams, FOCS’15; Alman—C.—Williams, FOCS’16]

e New Problem: express

AND-of-THR(z) = A S < t
ve[s?] |ke(d]

as a polynomial with small degree

e Rand. Sol'n 1: [Alman—Williams]

— replace AND with sum
— for each THR, take random sample of size d/2 & recurse
— if count € t = O(+/dl0g s), use interpolating polynomial

= degree O(\/dlogs)

Offline Hamming Nearest Neighbor
[Alman—Williams, FOCS’15; Alman—C.—Williams, FOCS’16]

e New Problem: express

AND-of-THR(z) =

A

ve[s?] |ke(d]

as a polynomial with small degree

> Ty St

e Simple Det. Sol'n 2: [Alman—C.—Williams]

— sum of Chebyshev polynomials

= degree

O(Vdlog s)

eq/\/a_‘_

T,(z/t)
/N NN

INVARVAVAVARS

Offline Hamming Nearest Neighbor
[Alman—Williams, FOCS’15; Alman—C.—Williams, FOCS’16]

e New Problem: express

AND-of-THR(z) = A S < t
ve[s?] |ke(d]

as a polynomial with small degree

e Combined Sol'n 3: [Alman—-C.—Williams]

— for each THR, take random sample of size » = d2/310gl/3 s
— use Sol’n 1 on sample
— ifcount € t £ O((d/+/r)+/l0g s), use Chebyshev polynomial

= degree O(d1/310g?/3s)

Offline Hamming Nearest Neighbor
[Alman—Williams, FOCS’15; Alman—C.—Williams, FOCS’16]

e degree O(d1/310g2/3 s)

e # monomials ~ s<- (O(d1/3 %92/3 s)>

<I)O(d1/3 l0g2/3 s)

0g s

< (c/a)0(01/3a2/3 097) for d = clogn, s = n®
_ n5(01/3a2/3)

< (n/s)01 for o =~ 1/0(\/c)

= 0((n/s)?) = n2—1/0(V/9) rand. time

(subquadratic when ¢ < l0g2 n, i.e., d < log3n)

Offline Hamming Nearest Neighbor
[Alman—Williams, FOCS’15; Alman—C.—Williams, FOCS’16]

e extends to offline £1 nearest neighbor in [U]¢ in
n2—1/0(VeU) rand. time

e offline (1+e¢)-approximate (¢, or £5) nearest neighbor
in n2—2(=7>) rand. time (via AND-of-Approx-THR)
(improving over Valiant [FOCS'12] & LSH for small ¢)

(appl’n: MAX-SAT with cn clauses in (2 — 1/0(c1/3))™ time)
(appl’'n: MAX-3-SAT with cn clauses in (2 — 1 /polylog ¢)™ time)

Open Problems

e derandomize?

e improve d1/3 degree for AND-of-THR?

e /1 nearest neighbor search for larger universe U ?

e beat LSH for offline 2-approximate nearest neighbor?

e online? (Larsen—Williams [SODA’17] solved online Boolean OV)
e better offline dominance: disprove OV/SETH??

e non-orthogonal problems are harder

(Williams [SODA'18]: offline ¢> nearest neighbor search
for d = w(log logn)? can’t be solved in O(n2—?) time,
assuming OV conjecture)

