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Basic Problems in Comp. Geometry

• Orthogonal range search
– preprocess n points in Rd s.t. we can detect, or count, or report

points inside a query axis-aligned box

q



Basic Problems in Comp. Geometry

• Orthogonal range search

• Dominance range search
– preprocess n points in Rd s.t. we can detect, or count, or report

points dominated by q, i.e., inside (−∞, q1]× · · · × (−∞, qd]

(many geom. appl’ns: computing skylines, . . . )

(orthogonal range search in Rd reduces to dominance in R2d)
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• Ball range search

• `2 nearest neighbor search
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Basic Problems in Comp. Geometry

• Non-orthogonal range search

• Halfspace range search

• Ball range search

• `2 nearest neighbor search

(many geom. appl’ns: bichromatic closest/farthest pair,
min spanning tree, convex hull, . . . )



Setting

• focus on orthogonal problems

• focus on exact, not approximate

• focus on upper bounds

• n online vs. offline queries



Low Dimensions:
Classical Results from Comp. Geometry

• Orthogonal range search:

dO(d) · n logO(d) n time

(but meaningful only when d ≤ δ0 logn. . . )

• Non-orthogonal range search:

dO(d) · n2−1/O(d) time



Connection to Non-Geom. Problems

• Boolean orthogonal vector problem (OV)
– given sets A,B of n vectors in {0,1}d, decide ∃a ∈ A, b ∈ B

s.t. a · b = 0

(appl’ns: subset queries, partial match queries for strings, . . . )

(equiv. to Boolean version of offline dominance)

(OV Conjecture: no O(n2−δ) alg’m for d = ω(logn))

• Boolean matrix multiplication
– given matrices A ∈ {0,1}n×n, B ∈ {0,1}n×n, compute
cij =

∨
k(aik ∧ bkj) for each i, j
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Connection to Non-Geom. Problems

• Boolean orthogonal vector problem (OV)
– given sets A,B of n vectors in {0,1}d, decide ∃a ∈ A, b ∈ B

s.t. a · b = 0

(appl’ns: subset queries, partial match queries for strings, . . . )

(equiv. to Boolean version of offline dominance)

(OV Conjecture: no O(n2−δ) alg’m for d = ω(logn))

• Boolean matrix multiplication
– i.e., given sets A,B of n vectors in {0,1}d, decide whether
a · b = 0 for each a ∈ A, b ∈ B



Connection to Non-Geom. Problems

• All-pairs shortest paths (APSP)
or (min,+)-matrix multiplication
– given matrices A ∈ Rn×n, B ∈ Rn×n, compute
cij = mink(aik + bkj) for each i, j

aik
bkj



Connection to Non-Geom. Problems

• All-pairs shortest paths (APSP)
or (min,+)-matrix multiplication
– given matrices A ∈ Rn×n, B ∈ Rn×n, compute
cij = mink(aik + bkj) for each i, j

(appl’ns: graph diameter/radius/etc., max 2D subarray, language

edit distance, min-weight triangulation of polygons, . . . )



Connection to Non-Geom. Problems

• All-pairs shortest paths (APSP)
or (min,+)-matrix multiplication
– given matrices A ∈ Rn×d, B ∈ Rd×n, compute
cij = mink(aik + bkj) for each i, j



Connection to Non-Geom. Problems

• All-pairs shortest paths (APSP)
or (min,+)-matrix multiplication
– i.e., given sets A,B of n vectors in Rd, compute

mink(ak + bk) for each a ∈ A, b ∈ B

(reduces to d instances of offline dominance by
“Fredman’s trick”:

ak0
+ bk0

≤ ak + bk ⇐⇒ ak0
− ak ≤ bk − bk0

)



Connection to Non-Geom. Problems

• (min,+)-convolution
– given vectors a, b ∈ Rn, compute ci = mink(ak + bi−k) for

each i

(appl’ns: jumbled string matching, knapsack, min k-enclosing
rectangles, . . . )

(reduces to O(
√
n) (min,+)-matrix multiplication of

√
n×
√
n

matrices)

• 3SUM
– given vectors a, b, c ∈ Rn, decide ∃i, j, k s.t. ai + bj = ck



Connection to Non-Geom. Problems

• SAT for sparse instances
– given CNF formula in n Boolean vars & cn clauses, decide ∃

satisfying assignment

(reduces to OV with 2n/2 Boolean vectors in cn dimensions)

– for each partial assignment of first n/2 vars, define vector a
with ai = 0 iff i-th clause is already satisfied;

– for each partial assignment of last n/2 vars, define vector b
with bi = 0 iff i-th clause is already satisfied)



Connection to Non-Geom. Problems

• SAT for sparse instances
– given CNF formula in n Boolean vars & cn clauses, decide ∃

satisfying assignment

(reduces to OV with 2n/2 Boolean vectors in cn dimensions)

• kSAT
(reduces to sparse case)

(SETH Conjecture: no (2− δ)n alg’m for k = ω(1))

• MAX-SAT for sparse instances

• MAX-kSAT



Connection to Non-Geom. Problems

• Integer 0-1 linear programming for sparse instances
– given cn linear inequalities with real coeffs. over n 0-1 vars,

decide ∃ satisfying assignment

(reduces to dominance with 2n/2 real vectors in cn dimensions)



High Dimensions:
By Fast Matrix Multiplication

• offline dominance in Boolean case (i.e., OV) can be
trivially solved by Boolean rect. matrix multiplication in
M(n, d, n) time
– M(n, n, n) = O(n2.373)

– M(n, d, n) = Õ(n2) for d ≈ n0.1

• offline dominance for real case can be reduced to
Boolean case, in O(mins(M(n, ds, n) + dn2/s))

time [Matoušek’91]

– by dividing into s buckets of size n/s

(but not clear how to beat n2 time. . . )



Moderate Dimensions:
This Talk

• subquadratic time for d beyond logarithmic?

• let d = c logn (c not necessarily constant)



Two Approaches

Part I. Comp. Geometry Techniques
(k-d trees, range trees)

Part II. Polynomial Method



k-d Trees [’75]

1. pick next axis i ∈ {1, . . . , d}
2. divide by median i-th coord.
3. recurse on both sides

preproc. time O(dn logn)

dominance query time O(n1−1/d)



Range Trees [’79]

0. recurse on projection along 1st coord.
1. divide by median 1st coord.
2. recurse on both sides

q

Pd(n) ≤ 2Pd(n/2) + Pd−1(n/2) ⇒ O(n logd n)

Qd(n) ≤ Qd(n/2) +Qd−1(n/2) ⇒ O(logd n)



“Lopsided” Range Tree for Offline
Dominance [Impagliazzo–Lovett–Paturi–Schneider’14]

0. recurse on projection along 1st coord.
1. divide by median 1st coord.
2. recurse on both sides

choose s.t.
α = β

(1−β)m query pts
αn data pts(1−α)n data pts

βm query pts



“Lopsided” Range Tree for Offline
Dominance [Impagliazzo–Lovett–Paturi–Schneider’14]

0. recurse on projection along 1st coord.
1. divide by (αn)-th largest 1st coord. for some α
2. recurse on both sides

choose α
s.t. α = β

(1−β)m query pts
αn data pts(1−α)n data pts

βm query pts

Td(n,m) ≤ max
α

[Td((1−α)n, αm) + Td(αn, (1−α)m)
+ Td−1((1−α)n, (1−α)m)]



“Lopsided” Range Tree for Offline
Dominance [Impagliazzo–Lovett–Paturi–Schneider’14]

Td(n,m) ≤ max
α

[Td((1−α)n, αm) + Td(αn, (1−α)m)
+ Td−1((1−α)n, (1−α)m)]

• Impagliazzo et al.: n2−1/Õ(c15) time for n offline
queries (for d = c logn)

• C. [SODA’15]: n2−1/Õ(c) time

(subquadratic for c� logn, i.e., d� log2 n)

(appl’n: integer linear programming with cn constraints in
(2−1/Õ(c))n time)

(but only works for offline. . . )



New “Lopsided” k-d Tree for Online
Dominance [C., SoCG’17]

0. directly build data structure for each possible
(d/b)-dimensional projection, with b ≈ (1/ε)c log c

1. pick next axis i ∈ {1, . . . , d}
2. divide by median i-th coord.
3. recurse on both sides

# projections
(
d
d/b

)
= bO(d/b) = bO((c logn)/b) = nO(ε)

⇒ preproc. time n1+O(ε)



New “Lopsided” k-d Tree for Online
Dominance [C., SoCG’17]

0. directly build data structure for each possible
(d/b)-dimensional projection, with b ≈ (1/ε)c log c

1. pick random axis i ∈ {1, . . . , d}
2. divide by (αn)-th largest i-th coord. with α ≈ 1/c4

3. recurse on both sides

# projections
(
d
d/b

)
= bO(d/b) = bO((c logn)/b) = nO(ε)

⇒ preproc. time n1+O(ε)



New “Lopsided” k-d Tree for Online
Dominance [C., SoCG’17]

Let Qj(n) = time for query pt with j bounded coords

If j ≤ d/b then base case else

Qj(n) ≤ max
`



`
d · Qj((1−α)n) +

j−`
d · (Qj(αn) +Qj−1((1−α)n)) +

d−j
d · (Qj(αn) +Qj((1−α)n))

q

αn data pts(1− α)n data pts
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New “Lopsided” k-d Tree for Online
Dominance [C., SoCG’17]

Let Qj(n) = time for query pt with j bounded coords

If j ≤ d/b then base case else

Qj(n) ≤ max
`
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New “Lopsided” k-d Tree for Online
Dominance [C., SoCG’17]

Let Qj(n) = time for query pt with j bounded coords

If j ≤ d/b then base case else

Qj(n) ≤ max
`



`
d · Qj((1−α)n) +

j−`
d · (Qj(αn) +Qj−1((1−α)n)) +

d−j
d · (Qj(αn) +Qj((1−α)n))

⇒ expected online query time n1−1/Õ(c)

(appl’n to APSP: Õ(n3/ log3 n) combinatorial alg’m [C., SoCG’17])

(specialization to Boolean case: k-d tree→ trie)



Open Problems

• deterministic online?

• lower bounds for geometric tree-based methods?



s-Way Range Tree: Reducing Offline
Real Dominance to Boolean [C., SoCG’17]

Assume that offline Boolean dominance (i.e., OV) can be
solved in n2−f(c) time

Let Tj(n) be time for n data & query pts in Rj × [s]d−j

If j = 0 then T0(n) ≤ n2−f(cs) else

Tj(n) ≤ sTj(n/s) + Tj−1(n)

Set s = c4

⇒ n2−f(c5)+O(1/c) time for offline real dominance



Two Approaches

Part I. Comp. Geometry Techniques
(k-d trees, range trees)

Part II. Polynomial Method



Boolean OV [Abboud–Williams–Yu, SODA’15]

• First reduce # of input vectors from n to n/s, by
treating each group of s vectors as one

⇒ given sets A,B of n/s vectors in {0,1}ds, evaluate
f(a, b) for each a ∈ A, b ∈ B, for this “funny” function

f(a, b) =
∧

i,j∈[s]

∨
k∈[d]

(aik ∧ bjk)

⇒ “funny” rect. matrix multiplication problem



Boolean OV [Abboud–Williams–Yu, SODA’15]

• If we can express f as polynomial, “funny” rect. matrix
multiplication reduces to standard rect. matrix
multiplication

• Example:

f(a, b) = a1b2 + 4a2b1b2 + 3a1a3b1 − 5a2b1b3

= (a1, 4a2, 3a1a3, −5a2) · (b2, b1b2, b1, b1b3)

• new dim. = # of monomials

• Õ((n/s)2) time if # of monomials� (n/s)0.1. . .



Boolean OV [Abboud–Williams–Yu, SODA’15]

• New Problem: express

f(a, b) =
∧

i,j∈[s]

∨
k∈[d]

(aik ∧ bjk)

as a polynomial with small # of monomials degree



Boolean OV [Abboud–Williams–Yu, SODA’15]

• New Problem: express

AND-of-OR(x) =
∧

`∈[s2]

∨
k∈[d]

x`k

as a polynomial with small degree

• Naive Sol’n:
∑
`

1− ∏
k∈[d]

(1− x`k)


⇒ degree d



Boolean OV [Abboud–Williams–Yu, SODA’15]

• New Problem: express

AND-of-OR(x) =
∧

`∈[s2]

∨
k∈[d]

x`k

as a polynomial with small degree

• Rand. Sol’n: by Razborov–Smolensky’s trick (’87)

– replace each OR with random linear combination in F2

– repeat log(100s2) times to lower error prob. to 1/(100s2)

– replace AND with another random linear combination in F2

⇒ degree O(log s)



Boolean OV [Abboud–Williams–Yu, SODA’15]

• degree O(log s)

• # monomials ≈ s2 ·
(

d
O(log s)

)

= ( d
log s)

O(log s)

= (c/α)O(α logn) for d = c logn, s = nα

= nO(α log(c/α))

� (n/s)0.1 for α ≈ 1/O(log c)

⇒ Õ((n/s)2) = n2−1/O(log c) rand. time

(better than n2/poly(d) when d� 2
√

logn)

(similar ideas used in Williams’s APSP alg’m [STOC’14] in
n3/2Ω(

√
logn) time)



Boolean OV [Abboud–Williams–Yu, SODA’15]

• Derandomization [C.–Williams, SODA’16]

– use ε-biased space for the random linear combinations in F2

– sum over entire sample space
– use modulus-amplifying polynomials before summing

• Extends to counting problem #OV (via SUM-of-OR)

(appl’ns: SAT & #SAT with cn clauses in (2−1/O(log c))n time,
kSAT & #kSAT in (2−1/O(k))n time)



Offline Hamming Nearest Neighbor
[Alman–Williams, FOCS’15; Alman–C.–Williams, FOCS’16]

• New Problem: express

f(a, b) =
∧

i,j∈[s]

 ∑
k∈[d]

(aik − bjk)2 ≥ t


as a polynomial with small degree



Offline Hamming Nearest Neighbor
[Alman–Williams, FOCS’15; Alman–C.–Williams, FOCS’16]

• New Problem: express

AND-of-THR(x) =
∧

`∈[s2]

 ∑
k∈[d]

x`k ≤ t


as a polynomial with small degree

• Rand. Sol’n 1: [Alman–Williams]

– replace AND with sum
– for each THR, take random sample of size d/2 & recurse
– if count ∈ t±O(

√
d log s), use interpolating polynomial

⇒ degree O(
√
d log s)



Offline Hamming Nearest Neighbor
[Alman–Williams, FOCS’15; Alman–C.–Williams, FOCS’16]

• New Problem: express

AND-of-THR(x) =
∧

`∈[s2]

 ∑
k∈[d]

x`k ≤ t


as a polynomial with small degree

• Simple Det. Sol’n 2: [Alman–C.–Williams]

– sum of Chebyshev polynomials

⇒ degree O(
√
d log s)

t+ 1t

eq/
√
d

1

−1

Tq(x/t)

0



Offline Hamming Nearest Neighbor
[Alman–Williams, FOCS’15; Alman–C.–Williams, FOCS’16]

• New Problem: express

AND-of-THR(x) =
∧

`∈[s2]

 ∑
k∈[d]

x`k ≤ t


as a polynomial with small degree

• Combined Sol’n 3: [Alman–C.–Williams]

– for each THR, take random sample of size r = d2/3 log1/3 s

– use Sol’n 1 on sample
– if count ∈ t±O((d/

√
r)
√

log s), use Chebyshev polynomial

⇒ degree O(d1/3 log2/3 s)



Offline Hamming Nearest Neighbor
[Alman–Williams, FOCS’15; Alman–C.–Williams, FOCS’16]

• degree O(d1/3 log2/3 s)

• # monomials ≈ s2 ·
(

d
O(d1/3 log2/3 s)

)

= ( d
log s)

O(d1/3 log2/3 s)

≤ (c/α)O(c1/3α2/3 logn) for d = c logn, s = nα

= nÕ(c1/3α2/3)

� (n/s)0.1 for α ≈ 1/Õ(
√
c)

⇒ Õ((n/s)2) = n2−1/Õ(
√
c) rand. time

(subquadratic when c� log2 n, i.e., d� log3 n)



Offline Hamming Nearest Neighbor
[Alman–Williams, FOCS’15; Alman–C.–Williams, FOCS’16]

• extends to offline `1 nearest neighbor in [U ]d in
n2−1/Õ(

√
cU) rand. time

• offline (1+ε)-approximate (`1 or `2) nearest neighbor
in n2−Ω̃(ε−1/3) rand. time (via AND-of-Approx-THR)
(improving over Valiant [FOCS’12] & LSH for small ε)

(appl’n: MAX-SAT with cn clauses in (2− 1/Õ(c1/3))n time)

(appl’n: MAX-3-SAT with cn clauses in (2− 1/polylog c)n time)



Open Problems

• derandomize?
• improve d1/3 degree for AND-of-THR?
• `1 nearest neighbor search for larger universe U?
• beat LSH for offline 2-approximate nearest neighbor?

• online? (Larsen–Williams [SODA’17] solved online Boolean OV)

• better offline dominance: disprove OV/SETH??

• non-orthogonal problems are harder
(Williams [SODA’18]: offline `2 nearest neighbor search
for d = ω(log logn)2 can’t be solved in O(n2−δ) time,
assuming OV conjecture)


