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WHAT IS A K-JUNTA, AND WHY SHOULD WE CARE?

Object of interest: Boolean function f : {0, 1}n →
{0, 1}. Might want to learn, approximate, manipulate f –
but n is huge. This will take time, and resources.

Hope: many irrelevant features. What if f actually only
depended on k � n variables? We then could try to “pay”
k instead of n everywhere!

Goal: given blackbox access to f and a parameter
k, find out if the function is a k-variate function “in
disguise.”

Now, even that may not be enough: we want to be robust.
If our function only mostly depends on k variables, that
should be good enough! I.e., we want to be able to tolerate
a little bit of noise.

JUNTAS, TESTING, AND TOLERANCE

Definition. A Boolean function f : {0, 1}n → {0, 1} is said to be a k-junta if there exists a set T ⊆ [n] of size at most k,
such that f(x) = f(y) for every two assignments x, y ∈ {0, 1}n that satisfy xi = yi for every i ∈ T .

We want to detect juntas efficiently, to avoid insane running times depending on n whenever possible. And this can be
done:

Theorem ([3, 4, 5, 6]). Testing whether a Boolean function f : {0, 1}n → {0, 1} is a k-junta has query complexity
Θ̃(k/ε), independent of n.

But what about this robustness we would like to obtain? Can we test efficiently whether a function is close to a junta?

Definition. A tolerant testing algorithm for a property P is a probabilistic algorithm T that gets two input parameters
ε1, ε2 ∈ [0, 1] with ε1 < ε2, and oracle access to a function f : {0, 1}n → {0, 1}; and outputs a binary verdict that
satisfies the following two conditions.

• If dist (f,P) ≤ ε1, then T accepts with probability at least 2/3.
• If dist (f,P) > ε2, then T rejects with probability at least 2/3.

Case ε1 = 0: “usual” testing. But being tolerant is harder – and sometimes much harder [2]. Is it the case here?

SUMMARY OF RESULTS

We give two (incomparable) results for tolerant testing of k-juntas, each with query complexity independent of n.

Theorem. There exists an algorithm that, given query access to f : {0, 1}n → {0, 1} and parameters k ≥ 1 and
ε ∈ (0, 1), satisfies the following.

• If f is ε/10-close to some k-junta, then the algorithm accepts with probability at least 2/3.
• If f is ε-far from every 2k-junta, then the algorithm rejects with probability at least 2/3.

The query complexity of the algorithm is poly(k, 1
ε ) .

Exploits a connection to submodular minimization: approximate minimization of a (noisy) submodular function
under a cardinality constraint. Yields an efficient algorithm for our testing problem – with a small catch.

Our second algorithm does not include that relaxation of the soundness condition, but features a tradeoff between
tolerance and query complexity:

Theorem. There exists an algorithm that, given query access to f : {0, 1}n → {0, 1} and parameters k ≥ 1, ε ∈ (0, 1)
and ρ ∈ (0, 1), satisfies the following.

• If f is ρε/16-close to some k-junta, then the algorithm accepts with high constant probability.
• If f is ε-far from every k-junta, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is O
(

k log k
ερ(1−ρ)k

)
.

Retrieves weakly tolerant results of Fischer et al. [7] for ρ = Θ(1/k), and tolerant tester with query complexity O
(
2k/ε

)
for ρ = Ω(1). Setting ρ, this can also be leveraged to obtain the following:

Application: “instance-by-instance” (tolerant) isomorphism testing of f, g : {0, 1}n → {0, 1}. “Why pay n if
there is a better parameter k = k(f, g)?”
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