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Abstract
Dynamic time warping constitutes a major tool for analyzing time series.

In particular, computing a mean series of a given sample of series in dynamic
time warping spaces (by minimizing the Fréchet function) is a challenging
computational problem, so far solved by several heuristic, inexact strategies.
We spot several inaccuracies in the literature on exact mean computation in
dynamic time warping spaces. Our contributions comprise an exact dynamic
program computing a mean (useful for benchmarking and evaluating known
heuristics). Empirical evaluations reveal significant deficits of the state-of-
the-art heuristics in terms of their output quality. Finally, we give an exact
polynomial-time algorithm for the special case of binary time series.

Keywords: time series analysis, Fréchet function, exact dynamic program-
ming, accuracy of heuristics

Time series
Ordered, finite sequence of rational numbers.
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ItalyPowerDemand

Measurements over time are ubiquitous, occurring in finance, multi-
media, internet security, biology, climate research, medicine,...

Dynamic Time Warping (dtw)
Measures similarity of time series.

Idea: Stretch time series non-uniformly such that the resulting
warped series align well in terms of some cost function.

  

Definition
A warping path of order m × n is a sequence p = (p1, . . . , pL) of

index pairs p` = (i`, j`) ∈ [m]× [n] such that
(i) p1 = (1, 1),

(ii) pL = (m,n), and
(iii) p`+1 − p` := (i`+1 − i`, j`+1 − j`) ∈ {(1, 0), (0, 1), (1, 1)}

for all 1 ≤ ` ≤ L− 1.

Example: Time series a = (0, 2, 2, 0, 1) and b = (1, 0, 2, 1).
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The cost Cp(x, y) of warping path p = (p1, . . . , pL) is defined as

Cp(x, y) :=

L∑
`=1

(xi` − yj`)
2.
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Cp(a, b) = 2

The dtw-distance between x = (x1, . . . , xm) and y = (y1, . . . , yn) is

dtw(x, y) := min
p∈Pm,n

{√
Cp(x, y)

}
.

(Pm,n is the set of all warping paths of order m× n.)

Clustering tasks often require to compute a mean.

Figure 1: Mean of two time series from the ItalyPowerDemand dataset. The time
series have been shifted along both axes for clearer presentation of the alignments.

DTW-MEAN

Input: Sample X =
(
x(1), . . . , x(k)

)
of k univariate rational time

series.
Task: Find a univariate rational time series z that minimizes the

Fréchet function

F (z) = 1
k

∑k
i=1

(
dtw(z, x(i))

)2
.
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Figure 2: Example of a mean of length two of two time series of length n.

Our Contributions
• First exact algorithm running in O(n2k+12kk) time
• Benchmark of existing heuristics
•O(n3k)-time algorithm computing a binary mean of binary time

series

Theorem

A mean of k time series x(1), . . . , x(k) of maximum length n can
be computed in O(n2k+1 · 2k · k) time.

Idea: Use dynamic programming.

Define k-dimensional table C of size nk storing F -values of means
for all subinstances.

Iteratively compute each table entry in O(nk · 2k · nk) time.
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Experiments
Goal: Assess performance of 5 state-of-the-art heuristics.

Algorithm Acr. Ref.

exact dynamic programming EDP
multiple alignment MAL [3, 4]
DTW barycenter averaging DBA [5]
soft-dtw SDTW [2]
batch subgradient BSG [2, 6]
stochastic subgradient SSG [6]

Table 1: List of algorithms compared in our experiments.

Data: 10 datasets from UCR Time Series Classification Archive.

UCR # L

ItalyPowerDemand 1096 24
SyntheticControl 600 60
SonyAIBORobotSurface1 621 70
ProximalPhalanxTW 605 80
ProximalPhalanxOutlineCorrect 891 80
MedicalImages 1141 99
TwoPatterns 5000 128
FaceAll 2250 131
ECG5000 5000 140
GunPoint 200 150

Table 2: Ten UCR time series data sets. (#: numbers of time series in the data set;
L: lengths of the time series.)

Experiment 1
Compare algorithms on 1,000 pairs of time series of equal length vary-
ing from 24 to 150.
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Figure 3: Results of experiment E1.

Error (%) of algorithm A = 100 · (FA/Fopt − 1)

FA = F -value of solution found by A, Fopt = optimal F -value (DP)

average error
percentage

standard
deviation

maximum error
percentage

# of optimal
solutions found

MAL 114.2 175.1 1093.9 3
DBA 37.1 34.7 274.3 0
SDTW 24.7 23.2 163.5 0
BSG 30.6 27.3 184.0 1
SSG 19.5 18.8 138.3 0

Table 3: Overview of the results from experiment E1.)

The heuristics perform rather poorly with an average error percentage
of at least 19% and a maximum error percentage of at least 138%.

Experiment 2
Compare algorithms on 1,000 samples of k (downsampled) time series
of length 8 for each k = 2, . . . , 5.
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Figure 4: Results of experiment E2. Shown are the error percentages as a function
of the sample size. Average error percentage and standard deviation.

The heuristics on average still deviate by at least 10% from the ex-
act solution in all cases. All heuristics slightly improve on average
with increasing sample size. A similar statement can be made for the
standard deviation, which is still at a high level.
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Figure 5: Results of experiment E2. Shown are the error percentages as a function
of the sample size. Maximum error percentage.

In contrast, there is no visible trend with respect to the maximum error
percentage.

Conclusion and Open Questions
• DTW-MEAN is a challenging (combinatorial) optimization prob-

lem solvable in O(n2k+12kk) time (polynomial time for constant k)

• State-of-the-art heuristics perform rather poorly

• A binary mean of binary time series can be found in polynomial
time

Open Questions:

Practical:

• Improve running time and find better heuristics

• Study characteristics (typical length, uniqueness)

• Performance of exact means in applications?

• Alternative mean definitions?

Theoretical:

• Polynomial-time solvable for fixed-length time series?

• Prove approximation guarantees

Remark: DTW-MEAN was recently proven to be NP-hard, W[1]-
hard w.r.t k, and not no(k)-time solvable (assuming ETH) [1].
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