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Known Results

Parameterized Complexity

@ Number of terminals |R)|.
FPT-algorithm [Dreyfus and Wagner '71, Mdlle et al. '06].

(1 + €)-approximate polynomial size kernel [Lokshtanov et al. '16].

@ Number of Steiner vertices in the optimum |V(T)\ R| = p.
W/[2]-hard [folklore].

Approximation

@ 96/95-approximation is NP-hard [Chlebik and Chlebikova '02].
@ 1.39-approximation algorithm [Byrka et al. '13].

We study the parameter p = |V/(T) \ R| — good problem for
parameterized approximation.
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Our Results

Existence of

@ Efficient parameterized approximation scheme — it returns
(1 + &)-approximation in time f(p,¢) - poly(n).

© Polynomial size approximate kernelization scheme.

Unweighted Weighted
Undirected v v v v
Directed v X * X x* X **
* Unless NP C coNP/poly.
** Unless FPT= W]2].
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Main Algorithmic ldea

@ Reduce the number of terminals under some bound f(p, ¢).

@ Use some existing algorithm or kernel for the parameter |R)|.

Undirected Unweighted Case

Reduction Rule 1: We can assume any such edge is in the optimal
solution.
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Main Algorithmic ldea

@ Reduce the number of terminals under some bound f(p, ¢).

@ Use some existing algorithm or kernel for the parameter |R)|.

Undirected Unweighted Case

Q

Reduction Rule 2: The optimal solution uses at least d edges to connect
terminals in Q. Our solution uses at most d + 1 edges.

ALG __ d+1 __ 1
OPT — ~d —1+g§1+8.
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o If we can not apply any rule:
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@ There are at most p/e terminals.

EPAS for Steiner Trees HALG 2018

5/5



Main Algorithmic ldea

@ Reduce the number of terminals under some bound f(p, ¢).

@ Use some existing algorithm or kernel for the parameter |R)|.

Undirected Unweighted Case

@ The directed unweighted case is similar.
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Thank you for your attention!
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