Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

Pavel Dvořák¹, Andreas Emil Feldmann¹, Dušan Knop^{1,2}, Tomáš Masařík¹, Tomáš Toufar¹, Pavel Veselý¹

> ¹Charles University, Prague, Czech Republic ²University of Bergen, Bergen, Norway

HALG 2018 Amsterdam, Netherlands

The research leading to these results has received funding from the European Research Coun-

cil under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant

Agreement n. 616787.

Input:

- ▶ Graph G = (V, E).
- ▶ Edge weights: $w : E \to \mathbb{R}^+_{0}$.
- ▶ Terminals *R* ⊂ *V* (vertices in *V* \ *R* are called Steiner vertices).
- Goal: find a Steiner tree $T \subseteq G$.
 - $\blacktriangleright R \subseteq V(T)$.
 - Minimize weight.

• Input:

• Graph G = (V, E).

R ⊆ V(T).
Minimize weight.

• Edge weights: $w : E \to \mathbb{R}_0^+$.

Goal: find a Steiner tree T ⊂ G.

▶ Terminals $R \subseteq V$ (vertices in $V \setminus R$ are called Steiner vertices).

• Input:

• Graph G = (V, E).

R ∈ *V*(*T*).
 Minimize weight

- Edge weights: $w : E \to \mathbb{R}_0^+$.
- ▶ Terminals $R \subseteq V$ (vertices in $V \setminus R$ are called Steiner vertices).

```
• Goal: find a Steiner tree T \subseteq G.
```


• Input:

- Graph G = (V, E).
- Edge weights: $w : E \to \mathbb{R}_0^+$.
- ▶ Terminals $R \subseteq V$ (vertices in $V \setminus R$ are called Steiner vertices).

• Goal: find a Steiner tree $T \subseteq G$.

$$\blacktriangleright R \subseteq V(T).$$

Minimize weight.

• Input:

- Graph G = (V, E).
- Edge weights: $w : E \to \mathbb{R}_0^+$.
- ▶ Terminals $R \subseteq V$ (vertices in $V \setminus R$ are called Steiner vertices).
- Goal: find a Steiner tree $T \subseteq G$.

$$\blacktriangleright R \subseteq V(T).$$

Minimize weight.

• Input:

- Graph G = (V, E).
- Edge weights: $w : E \to \mathbb{R}_0^+$.
- ▶ Terminals $R \subseteq V$ (vertices in $V \setminus R$ are called Steiner vertices).

• Goal: find a Steiner tree $T \subseteq G$.

$$\blacktriangleright R \subseteq V(T).$$

Minimize weight.

Parameterized Complexity

• Number of terminals |R|.

V[2]-hard [folklore]

▶ FPT-algorithm [Dreyfus and Wagner '71, Mölle et al. '06].

• Number of Steiner vertices in the optimum $|V(T) \setminus R| = p$.

(1 - z)-approximate polynomial size kernel lLokshtanov et al. [16]

Parameterized Complexity

• Number of terminals |R|.

V[2]-hard [folklore]

FPT-algorithm [Dreyfus and Wagner '71, Mölle et al. '06].

• Number of Steiner vertices in the optimum $|V(T) \setminus R| = \rho$.

• $(1 + \varepsilon)$ -approximate polynomial size kernel [Lokshtanov et al. '16].

• Number of terminals |R|.

WI2I-hard Ifolklorel

- FPT-algorithm [Dreyfus and Wagner '71, Mölle et al. '06].
- $(1 + \varepsilon)$ -approximate polynomial size kernel [Lokshtanov et al. '16].
- Number of Steiner vertices in the optimum $|V(T) \setminus R| = p$.

- Number of terminals |R|.
 - FPT-algorithm [Dreyfus and Wagner '71, Mölle et al. '06].
 - $(1 + \varepsilon)$ -approximate polynomial size kernel [Lokshtanov et al. '16].
- Number of Steiner vertices in the optimum $|V(T) \setminus R| = p$.
 - W[2]-hard [folklore].

- Number of terminals |R|.
 - FPT-algorithm [Dreyfus and Wagner '71, Mölle et al. '06].
 - $(1 + \varepsilon)$ -approximate polynomial size kernel [Lokshtanov et al. '16].
- Number of Steiner vertices in the optimum $|V(T) \setminus R| = p$.
 - W[2]-hard [folklore].

- Number of terminals |R|.
 - FPT-algorithm [Dreyfus and Wagner '71, Mölle et al. '06].
 - $(1 + \varepsilon)$ -approximate polynomial size kernel [Lokshtanov et al. '16].
- Number of Steiner vertices in the optimum $|V(T) \setminus R| = p$.
 - W[2]-hard [folklore].

Approximation

• 96/95-approximation is NP-hard [Chlebík and Chlebíková '02].

- Number of terminals |R|.
 - FPT-algorithm [Dreyfus and Wagner '71, Mölle et al. '06].
 - $(1 + \varepsilon)$ -approximate polynomial size kernel [Lokshtanov et al. '16].
- Number of Steiner vertices in the optimum $|V(T) \setminus R| = p$.
 - W[2]-hard [folklore].

Approximation

- 96/95-approximation is NP-hard [Chlebík and Chlebíková '02].
- 1.39-approximation algorithm [Byrka et al. '13].

- Number of terminals |R|.
 - FPT-algorithm [Dreyfus and Wagner '71, Mölle et al. '06].
 - $(1 + \varepsilon)$ -approximate polynomial size kernel [Lokshtanov et al. '16].
- Number of Steiner vertices in the optimum $|V(T) \setminus R| = p$.
 - W[2]-hard [folklore].

Approximation

- 96/95-approximation is NP-hard [Chlebík and Chlebíková '02].
- 1.39-approximation algorithm [Byrka et al. '13].

We study the parameter $p = |V(T) \setminus R|$ – good problem for **parameterized approximation**.

Our Results

Existence of

Efficient parameterized approximation scheme – it returns (1 + ε)-approximation in time f(p, ε) · poly(n).

Our Results

Existence of

- Efficient parameterized approximation scheme it returns (1 + ε)-approximation in time f(p, ε) · poly(n).
- **2** Polynomial size approximate kernelization scheme.

Our Results

Existence of

- Efficient parameterized approximation scheme it returns (1 + ε)-approximation in time f(p, ε) · poly(n).
- **2** Polynomial size approximate kernelization scheme.

	Unweighted		Weighted	
Undirected	\checkmark	\checkmark	\checkmark	\checkmark
Directed	\checkmark	×*	X **	×**

* Unless NP \subseteq coNP/poly.

** Unless FPT= W[2].

1 Reduce the number of terminals under some bound $f(p, \varepsilon)$.

- **1** Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

Reduction Rule 1: We can assume any such edge is in the optimal solution.

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

$$\frac{\text{ALG}}{\text{OPT}} = \frac{d+1}{d}$$

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

$$\frac{\text{ALG}}{\text{OPT}} = \frac{d+1}{d} = 1 + \frac{1}{d}$$

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

$$\frac{\mathrm{ALG}}{\mathrm{OPT}} = \frac{d+1}{d} = 1 + \frac{1}{d} \le 1 + \varepsilon.$$

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

• If we can not apply any rule:

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

- If we can not apply any rule:
 - There are only edges terminal–Steiner vertex.

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

- If we can not apply any rule:
 - There are only edges terminal-Steiner vertex.
 - 2 Each Steiner vertex is adjacent to at most $1/\varepsilon$ terminals.

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

- If we can not apply any rule:
 - There are only edges terminal-Steiner vertex.
 - 2 Each Steiner vertex is adjacent to at most 1/arepsilon terminals.
 - There is a Steiner tree with at most *p* Steiner vertices.

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

- If we can not apply any rule:
 - There are only edges terminal-Steiner vertex.
 - 2 Each Steiner vertex is adjacent to at most 1/arepsilon terminals.
 - **3** There is a Steiner tree with at most *p* Steiner vertices.
 - There are at most p/ε terminals.

- Reduce the number of terminals under some bound $f(p, \varepsilon)$.
- **2** Use some existing algorithm or kernel for the parameter |R|.

• The directed unweighted case is similar.

• Reduce the number of terminals under some bound $f(p, \varepsilon)$.

2 Use some existing algorithm or kernel for the parameter |R|.

• Reduce the number of terminals under some bound $f(p, \varepsilon)$.

2 Use some existing algorithm or kernel for the parameter |R|.

• In each step t we contract a star C_t of the smallest ratio $r(C_t)$.

• Reduce the number of terminals under some bound $f(p, \varepsilon)$.

2 Use some existing algorithm or kernel for the parameter |R|.

• In each step t we contract a star C_t of the smallest ratio $r(C_t)$.

Thank you for your attention!