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Generalized / Damped Proportional Response Dynamics (PRD)
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TAKE HOME MESSAGE
Market Dynamics to Reach Equilibrium

)
Optimization lterative Processes: Gradient / Mirror Descent

In Fisher CES Markets,

Tatonnement Price Updates by sellers « Gradient Descent (c., cole, Devanur, STOC 2013]

Proportional Response Spending Updates by buyers < Mirror Descent [tis work, ACM EC 2018]

Independent Interest from Optimization:
We present new Mirror Descent analyses to handle new and broad
classes of (Strongly) Bregman Convex or Convex-Concave Functions.

MOTIVATION

A major goal in Algorithmic Game Theory: justify equilibrium concepts (often defined statically)

from an algorithmic and complexity perspective.

How? Give efficient natural algorithm/dynamics which can be run in the highly distributed market

environment, and converge to market equilibrium.

(The following centralized algorithm techniques won't suffice: Ellipsoid Method, Interior Point Method, Flow-Based Combinatorial Algorithms.)

MARKET DYNAMICS

Buyer i has budget e;, and CES utility function (p; € [~cc, 1))
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For Substitute Range (p: > 0) [Wu, Zhang STOC 2007; Zhang ICALP 2009],
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We spotted that the above rule is equivalent to mirror descent
on the convex function
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For Complementary Range (»: < 0), the function becomes
concave, and the mirror ascent rule is our generalized PRD:

spending,;(t +1) = bj;(t+1) < e -

subject to V4, Zbij =1
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For Mixed Range, similar (but a bit more involved) update rule

converges. (Bregman Convex-Concave Functions appear.)

THEOREM. Convergence to market equilibrium for full range
of CES utility functions.

OPTIMIZATION

(ox,0v, Lx, Ly)-Strongly Bregman Convex-Concave
Function:

— Ly - dp(y',y) + 0x - dg(x',%)
< f(x',y') — linearization at f(x,y)
< —oy-du(yy) + Lx - dyg(x',x).

dg,dp, are ANY Bregman divergences.

R argmin{(vxf(xt,yt) , X — xt> +2Lx ~dg(x,xt)}

yt e argmin {— (Vy f(x",y") , y —y") + 2Ly - di(y,y")}
Y

THEOREM. If o, 0y are strictly positive, linear pointwise
convergence toward the saddle point.

THEOREM. If ox,0y > 0, O(1/T) empirical convergence
toward the saddle point.
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