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TAKE HOME MESSAGE
Market Dynamics to Reach Equilibrium

m

Optimization Iterative Processes: Gradient / Mirror Descent

In Fisher CES Markets,

Tâtonnement Price Updates by sellers ⇔ Gradient Descent [C., Cole, Devanur, STOC 2013]

Proportional Response Spending Updates by buyers ⇔ Mirror Descent [this work, ACM EC 2018]

Independent Interest from Optimization:
We present new Mirror Descent analyses to handle new and broad

classes of (Strongly) Bregman Convex or Convex-Concave Functions.

MOTIVATION
A major goal in Algorithmic Game Theory: justify equilibrium concepts (often defined statically)
from an algorithmic and complexity perspective.

How? Give efficient natural algorithm/dynamics which can be run in the highly distributed market
environment, and converge to market equilibrium.
(The following centralized algorithm techniques won’t suffice: Ellipsoid Method, Interior Point Method, Flow-Based Combinatorial Algorithms.)

MARKET DYNAMICS

Buyer i has budget ei, and CES utility function (ρi ∈ [−∞, 1])
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ρi)
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For Substitute Range (ρi ≥ 0) [Wu, Zhang STOC 2007; Zhang ICALP 2009],

spendingij(t+ 1) ≡ bij(t+ 1) ← ei ·
aij · (xij(t))

ρi

∑

k aik · (xik(t))ρi

.

We spotted that the above rule is equivalent to mirror descent

on the convex function
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bij = 1.

For Complementary Range (ρi ≤ 0), the function becomes

concave, and the mirror ascent rule is our generalized PRD:

bij(t+1)← ei·
a′ij · (total spending on good j at time t)
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For Mixed Range, similar (but a bit more involved) update rule

converges. (Bregman Convex-Concave Functions appear.)

THEOREM. Convergence to market equilibrium for full range
of CES utility functions.

OPTIMIZATION

(σX , σY , LX , LY )-Strongly Bregman Convex-Concave
Function:

− LY · dh(y
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≤ f(x′,y′)− linearization at f(x,y)

≤ − σY · dh(y
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′,x).

dg, dh are ANY Bregman divergences.
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THEOREM. If σX , σY are strictly positive, linear pointwise

convergence toward the saddle point.

THEOREM. If σX , σY ≥ 0, O(1/T ) empirical convergence

toward the saddle point.


